31 March 2012

First Quarter 2012 Groundwater Monitoring Report

Former CENCO Refinery 12345 Lakeland Road, Santa Fe Springs, CA

SLIC No. 0318, ID No. 2040071 CAO 97-118

Prepared on Behalf of

Isola Law Group, LLP Lodi, California

Prepared for

Regional Water Quality Control Board Los Angeles Region

Prepared By

TABLE OF CONTENTS

TABLE	OF CONT	ENTS	ii
List of	Tables		iii
List of	Figures		iii
List of	Appendice	es	iii
1.0	INTRODU	CTION	1
1.1	Purpos	e	1
1.2	Site Des	scription and History	1
2.0	GROUND	WATER SAMPLING ACTIVITIES	2
2.1	Monito	ring Network	2
2.2	Ground	water Gauging	3
2.3	Free-Ph	nase Petroleum Hydrocarbon (FPPH) Measurements	3
2.4	Ground	water Purging	3
2.5	Ground	water Sampling and Analysis	3
2.6	Quality	Assurance/Quality Control	4
2.	6.1 Tr	ip Blanks	4
2.	6.2 Du	ıplicates	4
2.	6.3 Eq	ıuipment Blanks	4
2.	6.4 La	boratory QA/QC Program	4
3.0	RESULTS	& DISCUSSION	5
3.1	Ground	water Surface Elevations and Gradient	5
3.2	Free-Ph	nase Petroleum Hydrocarbons	6
3.3	Ground	water Analysis	6
3.	3.1 TP	Hg	6
3.	3.2 VO	Cs and Oxygenates	7
3.	3.3 Bio	odegradation Parameters	8
3.	3.4 QA	./QC	9
4.0	SUMMAR	Y & CONCLUSIONS	11
4.1	Ground	water Surface Elevations and Gradient	11
4.2	Free-Ph	nase Petroleum Hydrocarbons	11
4.3	Ground	water Quality	12
4.	3.1 Off	f-Site Sources of Petroleum Hydrocarbons	12
4.	3.2 Dis	scussion of Solvent Detections	13

4.	.3.3 Assessment of Vapor Risk from Groundwater Plume	.13
	Biodegradation	
	REFERENCES	
6.0	CLOSING	.16

List of Tables

Table I Well Construction Details

Table II Summary of Groundwater Level Measurements

Table III Summary of TPH and VOC Results

Table IV Summary of Biodegradation Parameters

List of Figures

Figure 1	Site Location Map
Figure 2	Site Plan Showing Monitoring Well Locations
Figure 3	Site Plan Showing Groundwater Surface Elevations Q1 2012
Figure 4	Site Plan Showing TPHg Isoconcentration Contours Q1 2012
Figure 5	Site Plan Showing Benzene Isoconcentration Contours Q1 2012
Figure 6	Site Plan Showing MTBE Isoconcentration Contours Q1 2012
Figure 7	Site Plan Showing ORP Isoconcentration Contours Q1 2012

List of Appendices

Appendix A Groundwater Monitoring Field Forms

Appendix B Analytical Laboratory Reports

1.0 INTRODUCTION

On behalf of Isola Law Group, LLP, Murex Environmental (Murex) has prepared this *First Quarter 2012 Groundwater Monitoring Report* for Lakeland Development Company (Lakeland) for its former refinery property located at 12345 Lakeland Road in Santa Fe Springs, California (Site; **Figure 1**).

1.1 Purpose

The objective of the quarterly groundwater monitoring is to evaluate groundwater quality beneath the site and adjacent properties (**Figure 2**) and to provide regular updates to the Regional Water Quality Control Board, Los Angeles Region (RWQCB). This report presents the groundwater monitoring activities performed between January 26, 2012 and February 15, 2012, in accordance with the RWQCB Cleanup and Abatement Order (CAO) No. 97-118.

1.2 Site Description and History

The Site is approximately 55 acres in size and is bordered to the north by Florence Avenue, to the south by Lakeland Road, and to the east by Bloomfield Avenue (Figure 2). Commercial/light industrial properties border the site to the west. The site was operated as an oil refinery from the 1930s until July 1995. Historical aerial photographs indicate that the western portion of the site may have been used for agricultural purposes from approximately 1928 to 1938. Oil production-related structures such as ponds and aboveground holding tanks may have also been located onsite during this time period (Haley & Aldrich, Inc. [Haley & Aldrich], 2005). The refinery is not currently in operation; however, some of the refinery structures remain onsite. These structures are scheduled to be removed prior to the redevelopment of the property for commercial/light industrial use.

Previous refining operations included processing crude oil into several grades of fuel including kerosene, leaded gasoline and aviation fuel, unleaded gasoline, jet fuel, high and low-sulfur diesel, fuel oil, and petroleum coke. Soil and groundwater quality beneath and in proximity to the site have been impacted by past site operations. Soil and groundwater investigations are being conducted pursuant to a CAOs (No. 97-118) issued by the RWQCB to Powerine Oil Company (CENCO Refining Company) in 1997 (Haley & Aldrich, 2005).

2.0 GROUNDWATER SAMPLING ACTIVITIES

Quarterly groundwater monitoring has been conducted since August 1986. The previous monitoring event was performed by Murex in November 2011. The following subsections summarize work completed during the first quarter 2012 monitoring event.

2.1 Monitoring Network

The quarterly groundwater monitoring program currently includes the existing 59 wells, as listed in **Table I** and shown on **Figure 2**. These wells include:

- Twenty-two onsite groundwater monitoring wells: MW-101, MW-103, MW-104A, MW-105, MW-201, MW-202, MW-204, MW-205, MW-504, MW-701, MW-702, MW-703, MW-704, MW-705, MW-706, W-9, W-10, W-11, W-12, W-17A, W-17B, and W-17C;
- Twenty-five downgradient offsite groundwater monitoring wells of which:
 - Four are located on the former Lakeland property: MW-501A, MW-502, MW-503B, and MW-707; and
 - Twenty-one are located on the Metropolitan State Hospital (MSH) property:
 MW-600A, MW-601A, MW-603, MW-604, MW-605, MW-606, MW-607,
 MW-708, MW-709, MW-710, MW-711, MW-712, MW-713, MW-714, MW-715, W-14A, W-14B, W-14C, W-15A, W-15B, and W-15C;
- Seven offsite groundwater monitoring wells located to the southeast on the Walker property including: EW-1, W-1, W-3A, W-4, W-16A, W-16B, and W-16C;
- Three offsite groundwater monitoring wells located to the east on the Bloomfield property that include: MW-106A, MW-107A, and MW-203; and
- Two onsite, deep, former water production wells identified as W-7 and W-8.

2.2 Groundwater Gauging

Murex inspected and measured the depth to groundwater in all 59 of the wells on January 26, 2012. During gauging, wells are also checked for the presence and thickness of free-phase petroleum hydrocarbons (FPPH) product. Of those, 19 wells were dry, and 3 contained free-phase petroleum hydrocarbon (FPPH).

Table II summarizes the groundwater elevation and free product thickness measurements.

2.3 Free-Phase Petroleum Hydrocarbon (FPPH) Measurements

Wells that initially exhibit the presence of FPPH are purged until they become dry or until approximately 6 to 10 well volumes are evacuated. Thereafter, the wells are inspected for the return of FPPH and if present, its thickness is measured over longer and longer time intervals (in general 1 hour, 2 hours, 4 hours, 24 hours, 3 days, 7 days, and 10 days).

For wells in which FPPH does not return within the first day, groundwater is sampled for analysis.

Further discussion of the wells exhibiting free product is presented in Section 3.2.

2.4 Groundwater Purging

The groundwater monitoring wells that contained groundwater, with the exception of production wells W-7 and W-8, were purged via a dedicated vacuum stinger that was connected to a truck-mounted vacuum pump truck operated by Nieto & Sons. W-7 and W-8 are deep production wells and are sampled without purging water from them first. During purging, extracted groundwater volume and quality were recorded. The parameters measured during purging were flow rate, temperature, pH, electrical conductivity, dissolved oxygen (DO), oxidation-reduction potential (ORP), color, and odor. The results of the field parameter testing are summarized in **Table IV**. Purged groundwater was disposed of by Nieto & Sons at the wastewater treatment system in operation at the Site.

2.5 Groundwater Sampling and Analysis

Following purging, groundwater samples were collected by disposable bailer from the wells and placed in sample containers and stored in pre-cooled ice chests and transported under proper chain-of-custody (COC) procedures to Sunstar Laboratories, Inc. (Sunstar Labs) of Lake Forest, California, California Department of Public Health Environmental Laboratory Accreditation Program (ELAP) #2250. All collected samples were analyzed for the following:

- Total petroleum hydrocarbons as gasoline (TPHg) by U.S. Environmental Protection Agency (USEPA) Method 8015M, and
- Volatile organic compounds (VOCs) with oxygenates by USEPA Method 8260B.

Results of these analyses are summarized in **Table III** (Summary of VOCs, Oxygenates, TPH and Emergent Chemicals). Results of the field-measured parameters are shown in **Table IV**.

2.6 Quality Assurance/Quality Control

In accordance with the Quality Assurance/Quality Control (QA/QC) plan, Murex collected and submitted field duplicate samples and trip blanks for laboratory analysis as a quality assurance/quality control measure.

2.6.1 Trip Blanks

Trip blanks (provided by SunStar Lab) accompanied each daily groundwater sample shipment to evaluate the potential contamination of field samples during storage and transport. Trip blanks were analyzed for VOCs only.

2.6.2 Duplicates

Duplicate samples, which assess the precision of the laboratory analyses, were collected from wells MW-503B, MW-702, MW-704, MW-705, and MW-714. This represents a duplicate frequency equal to approximately 13% relative to the total number of wells sampled. The duplicates followed the same analytical protocols as their respective primary samples. The results of the duplicate analyses are shown in the results tables beside the original sample result.

2.6.3 Equipment Blanks

Equipment blanks were not collected because dedicated stingers were used to purge the wells and new disposable bailers were used for sampling, therefore eliminating cross-contamination between wells during the purging and sampling process.

2.6.4 Laboratory QA/QC Program

Laboratory QA/QC reports were reviewed to confirm proper completion of data validation tests, including batch QC results, method blanks, laboratory control samples, matrix spikes, and duplicates. The results of lab QC tests were within acceptable limits.

3.0 RESULTS & DISCUSSION

This section presents the results of the first quarter 2012 groundwater monitoring event. As mentioned earlier in the report, well completion details are provided in **Table I**. Groundwater level measurements and groundwater elevations are summarized in **Table II**. Comprehensive analytical results, including historical and recent results, are compiled in **Tables III**. **Table IV** contains a summary of bio-attenuation and field-measured parameter readings.

Figure 3 shows the groundwater elevation measured at each monitoring well, as well as the overall gradient and direction of groundwater flow. **Figure 4** depicts the concentrations and estimated contour lines of TPHg measured in each well, and **Figure 5** shows similar concentrations and contour lines for benzene and MTBE.

Well measurement and groundwater sampling forms are attached as **Appendix A**. Laboratory reports and completed COCs are included in **Appendix B**.

The presentation of the chemical testing results in this report does not distinguish between site- and non-site-related constituents although there are indications of non-site-related contamination in groundwater, which is discussed further in Section 4.3.

3.1 Groundwater Surface Elevations and Gradient

Groundwater surface elevations were calculated for each well by subtracting the water level measurement from the top of casing elevation (**Tables I and II**). Groundwater elevations were adjusted for wells containing FPPH, assumed to have a relative density of 0.80, which is typical for mean density of various petroleum hydrocarbon mixtures. Groundwater elevations, contour lines, flow direction and gradient are shown on **Figure 3**.

Based on groundwater level measurements obtained on January 26, 2012, first-encountered groundwater beneath the site vicinity ranges in elevation from 17.19 to 50.71 feet above mean sea level (ft-amsl). Wells W-7 and W-8 are production wells, with multiple screens situated deeper than 500 feet bgs. Their elevations were higher, between 58.85 and 73.36.

In general, groundwater elevations were similar to those measured in the fourth quarter 2011 monitoring event. Groundwater elevations had exhibited steady decreases for several years until the third quarter 2011, when they experienced a significant increase. The increase continued in the fourth quarter 2011 and has apparently leveled off. As a

whole, the average change in groundwater elevation over all the wells measured was an increase of approximately 1.38 feet from the fourth quarter 2011 sampling event.

The average horizontal groundwater gradient is approximately 0.007 foot per foot (ft/ft), as shown in **Figure 3**, which was similar to the previous monitoring period, and represents what is considered a moderately steep gradient. The groundwater flow direction originates from the northeast and turns south across the area of study. This flow direction is relatively consistent with those historically reported in previous investigations.

3.2 Free-Phase Petroleum Hydrocarbons

Measurable FPPH, also known as light non-aqueous-phase liquid or LNAPL, was detected in monitoring wells EW-1, W-11, and W-15A (**Table II**). Well W-15A exhibited measureable FPPH for the third time during this event. FPPH was measured at a thickness of 1.80 feet in EW-1, 1.08 feet in W-11, and 0.29 feet in W-15A. During previous monitoring events going back many years, FPPH was also historically detected in wells MW-101, MW-103, MW-104, MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-501, MW-502, MW-503, MW-503B, MW-504, MW-600, MW-600A, MW-601, MW-601A, W-3A. The majority of these wells are now dry.

3.3 Groundwater Analysis

Groundwater analytical results are summarized in **Tables III**, and laboratory reports and completed COCs are included in **Appendix B**.

3.3.1 TPHg

First quarter 2012 TPHg results are presented in **Table III** and **Figure 4**. TPHg was detected in 34 out of the 39 wells sampled at concentrations ranging from 53 micrograms per liter (μ g/L) in monitoring well W-15C to 62,000 μ g/L in monitoring well W-15A.

Well W-11 exhibited the largest decrease among all the wells from 10,000 $\mu g/L$ to 2,900 $\mu g/L$.

The most significant increase was observed in monitoring well W-711, where TPHg concentrations rose from 14,000 μ g/L in the fourth quarter 2011 to 23,000 μ g/L in the first quarter 2012. Well EW-1, which had also been exhibiting increases in TPHg concentration for the past 3 consecutive monitoring periods, was unable to be sampled due to the presence of free product, which quickly recharged into the well after purging. The most significant decreases in TPH-g were observed in wells MW-703, MW-704, MW-705, MW-709, MW-715, and W-11.

3.3.2 VOCs and Oxygenates

A summary of VOC and oxygenate analytical data for the first quarter 2012 is presented in **Table III**, along with historical data from previous monitoring events.

3.3.2.1 Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX)

Benzene was detected in 25 samples from the 39 total wells sampled. Concentrations ranged from 0.97 μ g/L in well MW-107A to 4,400 μ g/L in well W-15A (**Figure 5**) (24 of these wells contained benzene at concentrations exceeding the 1 μ g/L California Maximum Contaminant Level (MCL) in drinking water). Benzene concentrations in the first quarter of 2012 were similar to concentrations observed during previous monitoring events.

Of the other BTEX compounds analyzed for, toluene was detected in samples from 17 wells at concentrations ranging from 0.54 μ g/L in MW-107A to 2,400 μ g/L in W-15A. Toluene was detected above its California MCL (150 μ g/L) in 3 wells.

Ethylbenzene was detected in the samples collected from 18 wells at concentrations ranging from 0.57 μ g/L in W-7 to 2,400 μ g/L in W-15A. Ethylbenzene was detected at or above its California MCL (300 μ g/L) in 5 wells this quarter.

Total xylenes, including the *ortho, meta*, and *para* isomers, were detected in samples from 16 wells at concentrations ranging from 0.59 μ g/L in W-7 to 12,200 μ g/L in W-15A. Xylene was detected above the California MCL (1,750 μ g/L) in 2 wells.

3.3.2.2 Methyl tert-Butyl Ether (MTBE)

The oxygenate MTBE was detected in samples from 11 wells at concentrations ranging from 4.4 μ g/L in MW-706 and MW-709 to 930 μ g/L in W-15A (**Figure 6**). The 13 μ g/L drinking water MCL established for MTBE in California was exceeded in 8 wells.

3.3.2.3 tert-Butyl Alcohol (TBA)

TBA, another oxygenate and a byproduct of MTBE breakdown, was detected in 13 of the 39 sampled wells at concentrations ranging from 10 $\mu g/L$ in wells W-15C and W-17C to 230 $\mu g/L$ in well MW-705. The California Notification Level (formerly Action Level) and Response Level for Drinking Water for TBA is 12 $\mu g/L$. A total of 11 TBA detections exceeded this limit for this quarter.

3.3.2.4 Other VOCs

In addition to the aforementioned constituents of concern, several VOCs were detected in groundwater during this monitoring event. Some of these compounds, such as naphthalene, n-propylbenzene and trimethylbenzene, for instance, are related to petroleum hydrocarbon releases.

Conversely, also detected were chlorinated solvents, such as tetrachloroethene (PCE), trichloroethene (TCE), and cis- and trans-1,2-dichloroethene (cis-1,2-DCE and trans-1,2-DCE), among others, which we believe are the result of off-site contamination entering the Lakeland well network.

The most significant detections of chlorinated compounds are described as follows: to the southwest, in wells MW-710 and W-14B, PCE and TCE were detected between 22-110 ug/L.

The U.S. EPA and the RWQCB are aware of the chlorinated solvents in groundwater through their oversight of the cleanup of a Superfund site located to the north, and upgradient of the Lakeland property. Murex provides this data to the U.S. EPA on a periodic basis.

3.3.3 Biodegradation Parameters

Biodegradation of TPHg most commonly occurs by aerobic, nitrate-reducing, ferric iron (Fe³⁺)-reducing, sulfate-reducing, or methanogenic respiration. TPHg and BTEX serve as electron donors for microbial metabolism in aerobic biodegradation. Electron acceptors include oxygen, nitrate, Fe³⁺, sulfate, and carbon dioxide.

In general, if sufficient oxygen is present, aerobic biodegradation will occur first. When DO concentrations fall below approximately 0.5 mg/L (an anoxic environment), denitrification will begin if nitrate is present. After most nitrate has been consumed, Fe³⁺ reduction will begin if Fe³⁺ is present. Fe³⁺ concentrations will decrease, while Fe²⁺ concentrations will increase. After most Fe³⁺ is consumed, sulfate reduction will begin if sulfate is available. After most sulfate has been consumed, methanogenesis, which involves carbon dioxide as an electron acceptor, begins. During methanogenesis, methane concentrations increase (Department of the Navy, 1998).

The results discussed below indicate that biodegradation, whether aerobic or anaerobic, may be occurring in the local environment around the wells that were sampled for biodegradation parameters.

3.3.3.1 Field Measured Parameters

Field pH, DO, and oxidation-reduction potential (ORP) data were collected from 38 monitoring wells using an YSI 556 water quality meter (**Table IV**). The meter was inserted into grab water samples, collected from the vacuum truck intake during well purging.

- **pH** This parameter quantifies the acidity or alkalinity of a solution. Results ranged from 7.80 to 9.21 with a few exceptions, indicating a neutral to slightly alkaline environment that is suitable for the growth of alkalophilic bacteria and microorganisms that thrive at a circumneutral pH.
- **DO** Oxygen is the preferred electron acceptor in the biodegradation of petroleum hydrocarbons. When aerobic biodegradation occurs, DO concentrations are expected to decline as microorganisms use the electron acceptor during respiration. The vacuum stinger method used to purge the wells introduces oxygen into the groundwater. Therefore, DO data is not representative of the actual oxygen content. It is likely very low in wells exhibiting higher TPH concentrations, since oxygen is the first compound used up in the biological degradation of petroleum.
- **ORP** This parameter is a measure of electron activity, which reflects the oxidizing or reducing nature of the environment. ORP values are generally negative under reducing conditions (gaining electrons) and positive under oxidizing conditions (losing electrons). Negative ORP values were observed in 31 of the 34 wells measured.

ORP values ranged from -253.2 mV in well W-16C to 61.8 mV in Well W-9. **Figure 7** illustrates iso-concentration contour lines for ORP.

Hydrogen sulfide (produced from the reduction of sulfate in groundwater, after oxygen is used up) was detected during purging of wells exhibiting elevated TPH concentrations and low or negative ORP values, which is consistent with our understanding of the conceptual site model, and indicate that aerobic degradation of the hydrocarbons has stalled due to dissolved oxygen limitations. It is likely that the introduction of air (via bioventing for example) will enhance the process of stimulating the aerobic degradation of the constituents of concern at the site.

3.3.4 QA/QC

Duplicate sample results are provided alongside their primary sample results in **Tables III**. The results show similar concentrations of the analytes of interest as in their respective primary samples, as would be expected for an ELAP-certified laboratory.

Trip blank samples did not indicate the presence of VOCs, which indicates proper sample storage and confirms a lack of cross-contamination during transport.

Laboratory method blanks did not indicate the presence of VOCs, which indicates that laboratory detection equipment did not exhibit cross-contamination.

Laboratory control and laboratory spike samples exhibited results within acceptable limits, indicating no matrix interference and that the detection equipment was working properly.

4.0 **SUMMARY & CONCLUSIONS**

Groundwater monitoring was performed at and in the vicinity of the former CENCO refinery in February 2012 as part of an ongoing groundwater monitoring plan intended to evaluate chemical impacts, contaminant sources, and overall groundwater quality. This groundwater monitoring event included inspecting/gauging water levels in 59 wells and collecting samples from 39 of those wells for analysis of TPHg and VOCs.

4.1 Groundwater Surface Elevations and Gradient

A horizontal groundwater gradient of approximately 0.007 ft/ft was calculated for the fourth quarter groundwater monitoring event. This is consistent with historical gradient data for the site vicinity. Averaging all the wells exhibiting measurable groundwater, elevations have increased (although it dropped in select individual wells) by approximately 1.38 feet since the previous quarter. Groundwater flows from the northeast and turns due south across the area of study, which is consistent with historical measurements.

This was the fourth consecutive measurement period in which groundwater elevations increased on the whole, rather than decreased for several years. Most notably, wells MW-16B, MW-16C, MW-17B, and MW-17C exhibited very large increases since October 2010, which may indicate a decrease in pumping activities to the northeast. Deep-screened production wells W-7 and W-8 also exhibited increases in groundwater elevation, which greatly exceed shallow wells in their vicinity. When deeper groundwater monitoring wells exhibit faster increases in elevation in an unconfined aquifer that exhibits connectivity across several screen horizons, it is indicative of an upward pressure gradient acting through the aquifer. The pressure gradient is noticeable in monitoring wells first, and acts through the aquifer soils more slowly over time.

4.2 Free-Phase Petroleum Hydrocarbons

Measureable free product was identified in three wells EW-1, W-11, and W-15A. These wells have all exhibited FPPH in the past. The FPPH thickness measured in these three wells (1.80, 1.08, and 0.29 feet, respectively) does not necessarily reflect FPPH actual thickness in the surrounding aquifer as fluctuations in water levels and permeability factors can influence FPPH accumulation in monitoring wells.

Murex has conducted a study to compare the characteristics (i.e., "fingerprints") of FPPH samples taken from several of the monitoring wells, including wells that do not currently contain FPPH. Samples of FPPH were collected from wells W-11, MW-503B, MW-708, EW-1, and W-15A. All the samples were then submitted for fingerprinting analysis to Zymax Forensics Laboratory in Escondido, California on September 21, 2011. The findings of this

study were submitted to the RWQCB on January 25, 2012 as an addendum to the June 30, 2011 FPPH Investigation Report.

4.3 Groundwater Quality

The highest concentrations of TPHg detected during this sampling event were in the western portions of the site, as well as due south of these areas beneath the former Lakeland property and the northern portions of the MSH (see **Figure 4**). The maximum concentration of TPHg was measured in wells exhibiting FPPH, 62,000 ug/L in well W-15A, 23,000 ug/L in well MW-711 and 18,000 ug/L in well MW-708. Both MW-708 and MW-711 are located south of the former Lakeland property.

Benzene, toluene, ethylbenzene, xylene, and other compounds associated with petroleum hydrocarbons largely mimic TPHg in their presence and relative concentrations in the areas associated with the plume. The maximum concentration of benzene was detected in well W-15A, at 4,400 ug/L, located on the southeastern portion of the MSH (see **Figure 5**). The maximum concentration of MTBE was also detected in well W-15A at 930 ug/L, located southeast of the former Lakeland property (**Figure 6**) at a distance of approximately 3,000 feet. It is likely that the impacts present in well W-15A are resultant from releases other than those sourced from the refinery property.

In general, the petroleum hydrocarbon plume being studied within the Lakeland well network has not changed significantly during the many years of measurement, with the exception of the rather sudden and recent discovery of FPPH in well WW-15A, which may be the result of a release located near to that well.

Lakeland will continue to monitor the hydrocarbon plume within the well network and provided regular updates to the RWQCB through the monitoring and reporting program.

4.3.1 Off-Site Sources of Petroleum Hydrocarbons

In addition to historic releases from the Lakeland site, data collected from the monitoring well network (see **Figures 4, 5, and 6**) exhibits evidence of other sources. Some observations that would support the presence of alternative sources are 1) the comparatively clean appearance of FPPH in well W-15A versus the weathered or cloudy appearance of FPPH in wells MW-503B and MW-708, 2) the lack of MTBE in wells MW-707 and MW-711 despite the presence of benzene and 3) the historical presence of FPPH in wells EW-1 and W-3A, which are located east and cross-gradient of the former refinery.

In connection with the study of the FPPH samples submitted for fingerprinting analysis, Murex is also reviewing literature and maps to identify other possible sources of petroleum hydrocarbons in the vicinity of the Site as well as to distinguish Site-related contamination from contamination originating elsewhere.

4.3.2 Discussion of Solvent Detections

Data collected from the monitoring well network (see **Table III**) exhibits the presence of substances not linked to historic releases at the Site, including chlorinated solvents. The following observations were made regarding additional detected chemicals in groundwater within the Lakeland monitoring well network.

During this sampling event, elevated PCE and TCE concentrations (i.e., between 22 and 110 ug/L) were measured in wells W-14B and MW-710. This is consistent with previously measured high values from MW-710. Levels of PCE and TCE found in W-14B had been steadily increasing for the past several monitoring periods since January 2011. Historically, these compounds were also detected in wells MW-107A, MW-701, and MW-14C.

Cis-1,2-DCE and trans-1,2-DCE were found in 21 of the wells sampled at concentrations consistent with historical levels.

1,1-DCE was detected at an elevated concentration of 71 μ g/L in well MW-710. Historically, wells W-14B and W-14C also exhibited elevated concentrations of these chemicals.

This mixture of solvents varies from those detected on the eastern side of the Lakeland well network, as it exhibits a proportionally even blend (see historical results, well MW-105, **Table III**) of TCE and 1,1-DCE.

The U.S. EPA and the RWQCB are aware of the chlorinated solvents in groundwater through their oversight of the cleanup of a Superfund site located to the north, and upgradient of the Lakeland property. Murex provides this data to the U.S. EPA on a periodic basis.

4.3.3 Assessment of Vapor Risk from Groundwater Plume

At the direction of the DTSC, Lakeland has conducted an off-site soil gas sampling study. The results, presented to the RWQCB and DTSC in the November 7, 2011 *Off-Site Soil Gas Survey Report*, indicate that the petroleum hydrocarbon plume does not pose a threat to off-site receptors as a result of volatilization from groundwater.

4.4 Biodegradation

Intrinsic biodegradation continues to be viable, in at least some areas of the site and vicinity, based on nitrate, sulfate, Fe²⁺, methane, alkalinity, and ORP results from previous sampling events conducted at the site. Oxygen has been depleted, as evident by the presence of hydrogen sulfide in the deep subsurface (sulfate reduction reactions result in the formation of hydrogen sulfide). Since the main limiting factor for biodegradation of petroleum hydrocarbons is oxygen, the mechanical introduction of oxygen could stimulate aerobic biodegradation of the VOCs present in groundwater.

Murex conducted pilot testing at the site to determine the appropriate remedial technology which will effectively enhance biodegradation of the constituents of concern and reduce the extent of groundwater contamination. Based on the results and data collected during pilot testing, it appears that a combination of remedial technologies would be suited for the site. The results and conclusions of this study were submitted to the RWQCB in the Pilot Testing Report dated November 21, 2011.

5.0 REFERENCES

- 1. Arcadis. 2009. Second Quarter Groundwater Monitoring Report, Former CENCO Refinery, 12345 Lakeland Road, Santa Fe Springs, California. Prepared for Isola Law Group, LLP. June 25.
- Dan Herlihy Environmental Services. 2006. Letter from Dan Herlihy, Principal, to Mr. David Isola, Esq., Isola & Ruiz, LLC, re: Recommendations to Fill Data Gap and Modify Shallow Well Design & Sampling, Community Development Commission of the City of Santa Fe Springs v. Powerine Oil Company et al., Case No. VC039820. September 8.
- 3. Department of the Navy. 1998. *Technical Guidelines for Evaluating Monitored Natural Attenuation of Petroleum Hydrocarbons and Chlorinated Solvents in Ground Water at Naval and Marine Corps Facilities.* September.
- 4. Gustafson, J.B., Tell, J.G., Orem, D., 1996. Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG): Selection of Representative TPH Fractions Based on Fate and Transport Considerations. Volume 3.
- 5. Haley & Aldrich, Inc. 2004. *Draft 2004 Semi-Annual Groundwater Monitoring Report, CENCO Refinery, Santa Fe Springs, California*. October 18.
- 6. Haley & Aldrich, Inc. 2005. *Additional Site Investigation Work Plan, CENCO Refining Company*. May 9.

6.0 CLOSING

I certify under penalty of law that this document and all enclosures were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. The information contained herein is, to the best of my knowledge and belief, true, accurate and complete, however, is reliant upon public agency records, which could be incomplete or inaccurate beyond our control.

Should you have any questions or concerns regarding the material herein, please do not hesitate to contact the undersigned at (714) 508-0800.

Sincerely,

MUREX ENVIRONMENTAL, INC.

OF CALL

Jeremy R Squire, P.E.

Senior Engineer

Paris Hajali, Ph.D., P.E.

Principal

Table I
Well Construction Details
Former CENCO Refinery
Santa Fe Springs, CA

	W	ell Installation										Completion	n Data									
			Elev	vation ¹			S	creen			Dept	h (ft)					Elevat	ion¹ (ft)				
Well ID	Date	Ву	Ground Surface	Top of Casing	Hole Diameter	Casing Diameter (in)	Slot	Length	Sai	nd Pack	SI	otted	Total	Depth	San	nd Pack	SI	otted	Total	Depth	Location	Reference(s)
			(ft)	(ft amsl)			(in)	(ft)	Тор	Bottom	Тор	Bottom	Casing	Hole	Тор	Bottom	Тор	Bottom	Casing	Hole	-	
Groundwater	Monitoring Wells		•	•	•					•		•			•		•	•	•	•		
EW-1	6/11/1905	Emcon	146.85	146.85	-	4	-	-	-	-	-	-	113.5	-	-	-	-	-	-	-	Walker	Versar (2000)
MW-101	8/28/1985	IT	145.19	138.00	12	4	-	20	69.5	90	70	90	90	95	66	45	65	45	45	40	Refinery	IT (1986); Versar (2000); ARCADIS (2003)
MW-103	8/30/1985	IT	137.18	139.36	12	4	-	20	-	-	79	99	99	99.5	-	-	58	38	-	37	Refinery	IT (1986); Versar (2000); ARCADIS (2003)
MW-104	8/24/1985	IT	-	-	12	4	-	20	-	-	76.5	96.5	97	99	-	-	66	46	-	43	Refinery	IT (1986); Versar (2000); ARCADIS (2003)
MW-104A	6/1999	Versar	142.38	144.13	-	4	-	-	-	-	65	100	100	-	-	-	-	-	-	-	Refinery	Versar (2000); measured well depth
MW-105	12/1995	TriHydro		141.16	-	4	-	-	-	-	68	98	98	100	-	-	-	-	-	39	Refinery	Versar (2000); measured well depth
MW-106	12/1995	TriHydro	-	-	-	4	-	-	-	-	74	104	106.45	106	-	-	-	-	42	42	Bloomfield	Versar (2000)
MW-106A	2/20/2006	N&M	152.92	152.81	8	4	0 02	27	82	110	83	110	110	110	70	42	69	42	42	42	Bloomfield	Well completion report
MW-107	12/1995	TriHydro	-	-	-	4	-	-	-	-	75	105	107.55	108	-	-	-	-	41	41	Bloomfield	Versar (2000)
MW-107A	2/20/2006	N&M	147.37	147.02	8	4	0 02	27	82	110	83	110	110	110	64	36	63	36	36	36	Bloomfield	Well completion report
MW-201	9/10/1985	IT	134.86	135.65	12	4	-	30	66	103	72	102	102	103	67	30	61	31	31	30	Refinery	IT (1986); Versar (2000); ARCADIS (2003)
MW-202	9/23/1985	IT	139.00*	140.62	16	4	-	30	58	105	63	93	93	105	70	23	65	35	35	23	Refinery	IT (1986); Versar (2000); ARCADIS (2003)
MW-203	9/13/1985	IT	144.08	143.71	12	4	-	30	64.7	107	77	107	107	119	78	36	66	36	36	24	Bloomfield	IT (1986); Versar (2000); ARCADIS (2003)
MW-204	9/19/1985	IT	141.15	142.90	12	4	-	30	67.5	105	73.3	103.3	103.3	105	73	35	67	37	37	35	Refinery	IT (1986); Versar (2000); ARCADIS (2003)
MW-205	9/14/1985	IT	140.00*	140.09	12	4	-	30	65.5	103	69.5	99.5	99.5	104 5	73	35	69	39	39	34	Refinery	IT (1986); Versar (2000); ARCADIS (2003)
MW-206 ²	9/18/1985	IT	-	-	-	4	-	30	62.5	104	71	101	101	104	67	26	59	29	29	26	Lakeland	IT (1986); Versar (2000); ARCADIS (2003)
MW-501	6/9/1986	IT	-	-	-	4	-	30	-	-	71	101	101	107	-	-	58	28	-	22	Lakeland	IT (1986); Versar (2000); ARCADIS (2003)
MW-501A	3/1999	ATC	131.26	130.89	-	4	-	-	-	-	75	95	95	95	-	-	-	-	-	35	Lakeland	Versar (2000); measured well depth
MW-502	6/11/1986	IT	131.88	131.00	-	4	-	30	-	-	74	104	104	104	-	-	54	24	-	24	Lakeland	IT (1986); Versar (2000); ARCADIS (2003)
MW-503	6/13/1986	IT	-	-	-	4	-	30	-	-	80.5	110.5	110.5	111	-	-	51	21	-	20	Lakeland	IT (1986); Versar (2000); ARCADIS (2003)
MW-503B	1/1999	Versar	133.03	132.66	-	4	-	-	1	-	69	109	109	109	-	-	-	-	-	21	Lakeland	Versar (2000); measured well depth
MW-504	6/18/1986	IT	-	137.18	-	4	-	50	1	-	58	118	95.76	118	-	-	77	17	-	17	Refinery	IT (1986); Versar (2000); ARCADIS (2003)
MW-600	8/15/1990	ENSR	-	-	-	4	-	30	-	-	78	108	108	110	-	-	42	12	-	10	MSH	IT (1986); Versar (2000); ARCADIS (2003)
MW-600A	6/1999	Versar	123.28	124.26	-	4	-	-	-	-	-	-	92.7	100	-	-	-	-	-	20	MSH	Versar (2000); measured well depth
MW-601	8/17/1990	ENSR	-	-	-	4	-	30	-	-	85	115	115	117	-	-	40	10	-	8	MSH	IT (1986); Versar (2000); ARCADIS (2003)
MW-601A	6/1999	Versar			-	4	-	-	-	-	65	100	100	100	-	-	-	-	-	27	MSH	Versar (2000); measured well depth
MW-603	12/1995	TriHydro	121.40	120.95	-	4	-	-	-	-	70	100	100	100	-	_	-	-		19	MSH	Versar (2000); measured well depth
MW-604	12/1995	TriHydro	140.52	140.07	-	4	-	-	-	-	73	103	103	103	-	-	-	-	-	35	MSH	Versar (2000); measured well depth
MW-605	12/1995	TriHydro	117.40	116.82	-	4	-	-	-	-	65	95	95	95	-	-	-	-	-	20	MSH	Versar (2000); measured well depth
MW-606	12/1995	TriHydro	116.90	116.06	-	4	-	-	-	-	70	100	100	100	-	-	-	-	-	14	MSH	Versar (2000); measured well depth
MW-607	12/1995	TriHydro	128.92	128.28	-	4	-	-	-	-	77	107	107	107	-	-	-	-	-	19	MSH	Versar (2000); measured well depth
W-1	12/1995	TRC	145.19	144.81	-	4	-	-	-	-	70	129	129	130	-	-	-	-	-	13	Walker	IT (1986); Versar (2000)
W-2 ²	12/1995	TRC	-	-	-	4	-	-	-	-	84	129	129	129	-	-	-	-	-	-	Walker	IT (1986); Versar (2000)
W-3 ²	12/1995	TRC	-	-	-	4	-	-	-	-	82	122	122	124	-	-	-	-	-	-	Walker	IT (1986); Versar (2000)
W-3A	-	-	137.18	136.79	-	4	-	-	-	-	-	-	111.52	115	-	-	-	-	-	21	Walker	Versar (2000)
W-4	12/1995	TRC	143.18	142.56	-	4	-	20	-	-	580	600	609	-	-	-	-	-	-	-	Walker	IT (1986); Versar (2000)
W-9	8/22/2006	TA	140.37	139.84	8	2	0 01	35	73	111	75	110	110	120 5	66	28	64	29	29	19	Refinery	ARCADIS BBL (2006)
W-10	8/21/2006	TA	141.39	140.71	8	2	0 01	35	73	111	75	110	110	130	67	29	65	30	30	10	Refinery	ARCADIS BBL (2006)
W-11	8/25/2006	TA	141.96	142.10	8	2	0 01	35	73	111	75	110	110	119	68	30	66	31	31	22	Refinery	ARCADIS BBL (2006)
W-12	8/23/2006	TA	142.93	145.15	8	2	0 01	35	75	114	75	114	114	120 5	69	30	69	30	30	24	Refinery	ARCADIS BBL (2006)

Table I
Well Construction Details
Former CENCO Refinery
Santa Fe Springs, CA

	W	ell Installation										Completion	n Data									
			Elev	vation ¹			Sc	creen			Dept	h (ft)					Elevat	ion¹ (ft)				
Well ID	Date	Ву	Ground Surface	Top of Casing	Hole Diameter (in)	Casing Diameter (in)	Slot	Length	San	nd Pack	Slo	otted	Total I	Depth	San	nd Pack	SI	otted	Total I	Depth	Location	Reference(s)
			(ft)	(ft amsl)			(in)	(ft)	Тор	Bottom	Тор	Bottom	Casing	Hole	Тор	Bottom	Тор	Bottom	Casing	Hole		
W-14A	. / /		115.23	114.71	9	2	0 02	45	67	112	67	112	112	200	48	3	48	3	3	-85		
W-14B	1/22/2008- 1/30/2008	Arcadis	115.00*	114.78	9	2	0 02	10	157	167	157	167	167	200	-42	-52	-42	-52	-52	-85	MSH	ARCADIS (2008)
W-14C	1,50,2000		115.00*	114.78	9	2	0 02	10	185	195	185	195	195	200	-70	-80	-70	-80	-80	-85		
W-15A	44/27/2007		127.91	127.59	10	2	0 02	45	78	126	80	125	125	200	50	2	48	3	3	-72		
W-15B	11/27/2007- 12/10/2007	Arcadis	128.00*	127.61	10	2	0 02	10	143	156	145	155	155	200	-15	-28	-17	-27	-27	-72	MSH	ARCADIS (2008)
W-15C	, .,		128.00*	127.59	10	2	0 02	10	188	200	190	200	200	200	-60	-72	-62	-72	-72	-72		
W-16A	10/24/2007		147.89	147.60	10	2	0 02	45	76	125	78	123	123	200	72	23	70	25	25	-52		
W-16B	10/24/2007- 10/30/2007	Arcadis	148.00*	147.68	10	2	0 02	10	143	156	152	162	162	200	5	-8	-4	-14	-14	-52	Walker	ARCADIS (2008)
W-16C			148.00*	147.67	10	2	0 02	10	184	200	186	196	196	200	-36	-52	-38	-48	-48	-52		
W-17A	1/31/2008-		141.60	141.38	9	2	0 02	45	63	108	63	108	108	200	78	33	78	33	33	-59		
W-17B	2/8/2008	Arcadis	142.00*	141.37	9	2	0 02	10	159	169	159	169	169	200	-18	-28	-18	-28	-28	-59	Refinery	ARCADIS (2008)
W-17C	, ,		142.00*	141.38	9	2	0 02	10	190	200	190	200	200	200	-49	-59	-49	-59	-59	-59		
MW-701	12/6/2010	Murex	136.87	139.48	12	4	0 02	50	77	130	80	130	130	130	59.87	6 87	56.87	6.87	6.87	6.87	Refinery	Murex (2011)
MW-702	12/15/2010	Murex	140.90	140.12	12	4	0 02	50	77	130	80	130	130	130	63.90	10.90	60.90	10.90	10.90	10.90	Refinery	Murex (2011)
MW-703	12/10/2010	Murex	134.73	137.23	12	4	0 02	50	77	130	80	130	130	130	57.73	4.73	54.73	4.73	4.73	4.73	Refinery	Murex (2011)
MW-704	12/14/2010	Murex	137.93	137.66	12	4	0 02	50	77	130	80	130	130	130	60.93	7 93	57.93	7.93	7.93	7.93	Refinery	Murex (2011)
MW-705	12/13/2010	Murex	139.16	141.94	12	4	0 02	50	77	130	80	130	130	130	62.16	9.16	59.16	9.16	9.16	9.16	Refinery	Murex (2011)
MW-706	12/9/2010	Murex	139.68	139.30	12	4	0 02	50	77	130	80	130	130	130	62.68	9.68	59.68	9.68	9.68	9.68	Refinery	Murex (2011)
MW-707	12/23/2010	Murex	128.86	128.43	12	4	0 02	50	77	130	80	130	130	130	51.86	-1.14	48.86	-1.14	-1.14	-1.14	Getty Drive	Murex (2011)
MW-708	1/12/2011	Murex	126.73	126.26	12	4	0 02	50	77	130	80	130	130	130	49.73	-3 27	46.73	-3.27	-3.27	-3.27	MSH	Murex (2011)
MW-709	1/26/2011	Murex	140.48	139.78	12	4	0 02	50	77	130	80	130	130	130	63.48	10.48	60.48	10.48	10.48	10.48	MSH	Murex (2011)
MW-710	1/13/2011	Murex	122.15	121.99	12	4	0 02	50	77	130	80	130	130	130	45.15	-7 85	42.15	-7.85	-7.85	-7.85	MSH	Murex (2011)
MW-711	1/17/2011	Murex	128.09	127.84	12	4	0 02	50	77	130	80	130	130	130	51.09	-1 91	48.09	-1.91	-1.91	-1.91	MSH	Murex (2011)
MW-712	1/24/2011	Murex	123.57	123.31	12	4	0 02	50	77	130	80	130	130	130	46.57	-6.43	43.57	-6.43	-6.43	-6.43	MSH	Murex (2011)
MW-713	1/19/2011	Murex	128.42	128.15	12	4	0 02	50	77	130	80	130	130	130	51.42	-1 58	48.42	-1.58	-1.58	-1.58	MSH	Murex (2011)
MW-714	1/20/2011	Murex	129.07	128.87	12	4	0 02	50	77	130	80	130	130	130	52.07	-0 93	49.07	-0.93	-0.93	-0.93	MSH	Murex (2011)
MW-715	1/27/2011	Murex	116.66	116.22	12	4	0 02	50	77	130	80	130	130	130	39.66	-13 34	36.66	-13.34	-13.34	-13.34	MSH	Murex (2011)
Groundwater I	Production Wells			1		1	, ,	-		1	1		, ,			•	1		, ,		,	
					-	-	-	80	-	-	450	530	690	-	-	-	-	-	-	-	Refinery	
W-7	-		-	141.97	-	-	-	90	-	-	600	690	-	-	-	-	-	-	-	-	Refinery	IT (1986)
W-8	-		-	141.11	-	-	-	-	-	-	-	-	994	-	-	-	-	-	-	-	Refinery	

NOTES:

Sources: IT, 1986; Versar, 2000; Arcadis, 2003, 2006, 2008, and 2009; Dan Herlihy Environmental Services, 2006 (as shown).

²Well abandoned

ft Feet

in Inches

MSH Metropolitan State Hospital Property

amsl Above mean sea level

TA Test America Drilling

TOC Top of casing

* Value retrieved from Google Earth

¹Survey by BLC Surveying and BBL, Inc. Benchmark No. 13-15290 City of Los Angeles

Table II Summary of Groundwater Level Measurements Former CENCO Refinery Santa Fe Springs, CA First Quarter 2012

			Depth to	Depth To	FPPH	Top of Casing	Groundwater
Well ID	Date	Total Depth	Groundwater	FPPH	Thickness	Elevation	Elevation
		(ft)	(ft)	(ft)	(ft)	(ft amsl)	(ft amsl)
EW-1	1/26/2012	113.00	107.52	105.72	1.80	146.85	39.33
W-1	1/26/2012	129.61	109.91			144.81	34.90
W-3A	1/26/2012	111.73	DRY			136.79	NA
W-4	1/26/2012	129.71	111.13			142.56	31.43
W-7	1/26/2012	NM	83.12			141.97	58.85
W-8	1/26/2012	NM	67.75			141.11	73.36
W-9	1/26/2012	110.37	92.58			139.84	47.26
W-10	1/26/2012	110.21	97.63			140.71	43.08
W-11	1/26/2012	112.61	98.90	97.82	1.08	142.10	43.20
W-12	1/26/2012	116.10	103.39			145.15	41.76
W-14 A	1/26/2012	111.85	92.37			114.71	22.34
W-14 B	1/26/2012	112.09	90.35			114.78	24.43
W-14 C	1/26/2012	166.57	90.60			114.78	24.18
W-15 A	1/26/2012	125.70	110.40	110.11	0.29	127.59	17.19
W-15 B	1/26/2012	155.60	110.11			127.61	17.50
W-15 C	1/26/2012	197.34	109.77			127.59	17.82
W-16 A	1/26/2012	123.12	113.40			147.60	34.20
W-16 B	1/26/2012	160.25	109.46			147.68	38.22
W-16 C	1/26/2012	196.30	109.12			147.67	38.55
W-17 A	1/26/2012	108.30	96.96			141.38	44.42
W-17 B	1/26/2012	169.60	98.15			141.37	43.22
W-17 C	1/26/2012	200.00	98.19			141.38	43.19
MW-101	1/26/2012	90.72	DRY			138.00	NA
MW-103	1/26/2012	94.70	DRY			139.36	NA
MW-104A	1/26/2012	100.08	93.42			144.13	50.71
MW-105	1/26/2012	100.47	DRY			141.16	NA
MW-106A	1/26/2012	110.00	105.78			152.81	47.03
MW-107A	1/26/2012	109.49	104.67			147.02	42.35
MW-201	1/26/2012	101.60	DRY			135.65	NA
MW-202	1/26/2012	92.55	DRY			140.62	NA
MW-203	1/26/2012	102.30	DRY			143.71	NA
MW-204	1/26/2012	103.10	DRY			142.90	NA
MW-205	1/26/2012	98.27	DRY			140.09	NA
MW-501A	1/26/2012	93.27	DRY			130.89	NA
MW-502	1/26/2012	100.59	DRY			131.00	NA 22.25
MW-503B MW-504	1/26/2012	108.67	100.31			132.66	32.35
	1/26/2012	95.76	DRY			137.18	NA NA
MW-600A MW-601A	1/26/2012	92.70	DRY DRY			124.26 126.53	NA NA
MW-603	1/26/2012 1/26/2012	89.90 97.60	DRY			120.95	NA NA
MW-604	1/26/2012	103.20	DRY			140.07	NA NA
MW-605	1/26/2012	93.98	DRY			116.82	NA NA
MW-606	1/26/2012	99.05	DRY			116.06	NA NA
MW-607	1/26/2012	107.05	DRY			128.28	NA NA
MW-701	1/26/2012	130.00	98.85			139.48	40.63
MW-702	1/26/2012	130.00	98.74			140.12	41.38
MW-703	1/26/2012	130.00	100.23			137.23	37.00
MW-704	1/26/2012	130.00	102.11			137.66	35.55
MW-705	1/26/2012	130.00	103.39			141.94	38.55
MW-706	1/26/2012	130.00	100.00			139.30	39.30
MW-707	1/26/2012	130.00	96.96			128.43	31.47
MW-708	1/26/2012	130.00	96.46			126.26	29.80
MW-709	1/26/2012	130.00	109.88			139.78	29.90

Table II

Summary of Groundwater Level Measurements Former CENCO Refinery Santa Fe Springs, CA First Quarter 2012

			Depth to	Depth To	FPPH	Top of Casing	Groundwater
Well ID	Date	Total Depth	Groundwater	FPPH	Thickness	Elevation	Elevation
MW-710	1/26/2012	130.00	93.67			121.99	28.32
MW-711	1/26/2012	130.00	101.00			127.84	26.84
MW-712	1/26/2012	130.00	98.70			123.31	24.61
MW-713	1/26/2012	130.00	104.90			128.15	23.25
MW-714	1/26/2012	142.00	104.52			128.87	24.35
MW-715	1/26/2012	134.00	96.06			116.22	20.16

NOTES:

ft Feet

FPPH Free-phase petroleum hydrocarbons

amsl Above mean sea level
NM Not measured, inaccessible
NA Not available/applicable

Location	Unit	Date	TPH-g	В	Т	Е	m/p-X	o-X	MTBE	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
EW-1	UG/L	11/1/1989	9800	730	16	1400A	, p	0.11			7.00			<5		9.8	32,2 2 32		<5	<5	29
EW-1	UG/L	3/1/1990		1800	300	1800								<25		<50			<25	<25	<100
EW-1	UG/L	4/1/1990		1300	290	1600								<1		20	110		<10	<10	<20
EW-1	UG/L	8/21/1998	5000	230	<50	630			<50		150	<50	<50	<50		<50	<50		<50	<50	<100
EW-1	UG/L	1/28/1999	7900	110	<50	540			<50		130	<50	<50	<50		<50	<50		<50	<50	<100
EW-1	UG/L	7/19/1999	8000	110	<25	1000			<25		<250	<25	25	<25		<25	<25		<25	<13	<13
EW-1	UG/L	1/13/2000	NS	NS	NS	NS			NS		NS	NS	NS	NS		NS	NS		NS	NS	NS
EW-1	UG/L	7/31/2000	NS	NS	NS	NS			NS		NS	NS	NS	NS		NS	NS		NS	NS	NS
EW-1	UG/L	2/6/2001	NS	NS	NS	NS			NS		NS	NS	NS	NS		NS	NS		NS	NS	NS
EW-1	UG/L	7/26/2001	NS	NS	NS	NS			NS		NS	NS	NS	NS		NS	NS		NS	NS	NS
EW-1	UG/L	5/6/2002	NS	NS	NS	NS			NS	NS	NS	NS	NS	NS		NS	NS		NS	NS	NS
EW-1	UG/L	9/25/2002	NS	NS	NS	NS			NS	NS	NS	NS	NS	NS		NS	NS		NS	NS	NS
EW-1	UG/L	11/10/2006	4800	65	<4	68	16	<4	<10	<100	42	6.9	<4	<4		8.4	6.3		<4	<4	<10
EW-1	UG/L	2/9/2007	4100	41	<2	39	9.4	<2	<5	<50	26	5.1	2.3	<2		7.8	6.5		<2	<2	<5
EW-1	UG/L	5/10/2007	3300	19	1.5	15	3.7	<4	<10	17	10	2.6	1.4	<4		6.9	6.9		<4	<4	<10
EW-1	UG/L	8/10/2007	3200	36	2.3	14	4.7	0.64	<5	15	20	3.2	1.4	<2		9.9	11		0.35	<2	<5
EW-1	UG/L	2/8/2008	4100	73	1.9	4.9	<4	<4	<10	31	5.3	0.48	<4	<4		14	9.8		0.54	<4	2.6
EW-1	UG/L	2/3/2011	4200	20	1.4	27	13	<0.50	<1.0	<10	22	<1.0	<1.0	<1.0	1.1	5.1	3.5	<1.0	<1.0	<0.50	<1.0
EW-1	UG/L	2/3/2011	4500	20	1.5	27	13	<0.50	<1.0	<10	42	<1.0	<1.0	<1.0	1.3	5.9	4.0	<1.0	<1.0	<0.50	<1.0
EW-1	UG/L	4/13/2011	4700	29	3.2	51	28	0.74	<1.0	<10	67	1.9	<1.0	<1.0	3.7	8.9	8.6	<1.0	<1.0	<0.50	<1.0
MW-101	UG/L	6/1/1988		620	<5	<5															
MW-101	UG/L	9/1/1988		310	10	34															
MW-101	UG/L	12/1/1988		490	28	<5															
MW-101	UG/L	6/1/1992		440	<5	<5															
MW-101	UG/L	9/1/1992		340	<5	<5															
MW-101	UG/L	12/1/1992		290	<5	<5															
MW-101	UG/L	3/1/1993		200	<5	<5															
MW-101	UG/L	12/1/1994		62	<5	5															
MW-101	UG/L	3/1/1995		110	<5	110															
MW-101	UG/L	9/1/1995		180	<4	180															1
MW-101	UG/L	12/13/1995	2400	90	5.9	6.4								36		0.97	45		9.3	1.8	<0.5
MW-101	UG/L	7/31/1996	2300	130	14	130			<10					24000		<0.3	350		8.6	1.6	<0.3
MW-101	UG/L	12/17/1996	920	<25	<50	<25			<2		<25	<25	<25	57		<25	90		<25	<25	<50
MW-101	UG/L	1/19/1998	1400	65	<5	<5			<5		<10	<5	<5	180		<5	62		17	<5	<10
MW-101	UG/L	8/18/1998	3200	140	<5	15					<10	<5	<5	34		<5	52		<5	<5	<10
MW-101	UG/L	1/26/1999	3200	68.4	<5	7.08			<5		<10	<5	<5	19.3		<5	71.9		13.9	<5	<10
MW-101	UG/L	7/19/1999	1300	22	<2	2.4			<2		<20	<2	<2	78		8.5	57		18	<1	<1
MW-101	UG/L	1/10/2000	690	9.2	<1	<1			<1		<10	<1	<1	210		3.5	25		12	2.6	<0.5
MW-101	UG/L	8/3/2000	<500	24	<2	<2			<2		<20	<2	<2	37		19	33		15	3.6	5
MW-101	UG/L	2/9/2001	600	26	<5	<5			<5		<50	<5	<5	9.9		11	21		7.5	<2.5	3.2
MW-101	UG/L	7/26/2001	690	25	<1	2.5			<1		<10	<1	<1	8.1		15	28		8.2	<5	4.3
MW-101	UG/L	5/8/2002	580	17	<1	1.3			<1	<10000	<10	<1	<1	6.2		5.6	16		2.9	<0.5	1.9
MW-101	UG/L	9/25/2002	570	31	<1	1.2			<1	27000	<10	<1	<1	4.5		4.5	14		3	<0.5	<0.5
MW-101	UG/L	8/3/2006	2700	89	<2	3.6	<2	<2	<5	<50	<5	<2	<2	<2		2.4	26		<2	<2	<5
MW-101	UG/L	11/10/2006	1900	100	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		2.2	33		<2	<2	<5
MW-101	UG/L	2/12/2007	2100	240	<8	<8	<8	<8	<20	72	<20	<8	<8	<8		<8	47		<8	<8	<20
MW-101	UG/L	5/11/2007	1100	29	0.47	1	<2	<2	<5	<50	0.76	<2	<2	0.37		2.6	26		1.5	0.39	0.82
MW-101	UG/L	8/8/2007	2600	31	0.49	0.95	<2	<2	<5	<50	<5	<2	<2	0.43		<2	21		1	0.46	0.72

Location	l loit	Data	TDU a	В	т -	F	m /m V	. V	NATOR	TDA	NAD	1 2 4 TMAD	1 2 F TMP	DCE	TCF	+1 2 DCF	-1.2 DCF	11000	1.2.004	VC
Location	Unit	Date	TPH-g		0.0	_	m/p-X	0-X	MTBE	TBA	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE 1,1-DC	•	1,2-DCA	VC
MW-101	UG/L	11/8/2007	830	62	0.9	1.7	0.8	<0.3	<0.32	<4.9	<0.41	0.24	<0.26	<0.32		<0.27	31	1.2	<0.28	<0.3
NAVA (4.02	110/1	6/4/4000		070	7.4	.5														
MW-103	UG/L	6/1/1988		970	74	<5 -r														
MW-103	UG/L	9/1/1988		300	<5 -r	<5														
MW-103	UG/L	12/1/1988		370	<5 	<5 .rs														
MW-103	UG/L	3/1/1989		940	<5 .5	<5														
MW-103	UG/L	6/1/1989		700	<5 20	<5														\vdash
MW-103	UG/L	9/1/1989		1000	30	<5 -														
MW-103	UG/L	3/1/1992		210	< 5	5														
MW-103	UG/L	6/1/1992		880	< 5	< 5														
MW-103	UG/L	9/1/1992		200	< 5	< 5														
MW-103	UG/L	12/1/1992		350	<5	<5														
MW-103	UG/L	3/1/1993		<5	8	19														
MW-103	UG/L	5/1/1993		4800	<250	<250														
MW-103	UG/L	5/25/1993		4800	<250	<250														
MW-103	UG/L	9/1/1993		1300	88	62														
MW-103	UG/L	11/1/1993		1400	<250	<250														
MW-103	UG/L	12/1/1994		240	<10	<10														
MW-103	UG/L	3/1/1995		160	<5	<5														
MW-103	UG/L	9/1/1995		900	<50	<50														
MW-103	UG/L	12/13/1995	4100	410	4.1	2.6								<0.5		<0.5	<0.5	2.2	2.1	2.5
MW-103	UG/L	7/31/1996	2700	340	5	<0.5			<10					<0.3		<0.3	0.7	17	1.7	<0.3
MW-103	UG/L	12/17/1996	2400	200	<5	<5			<10		<5	<5	<5	8.9		<5	<5	27	<5	54
MW-103	UG/L	1/21/1998	1300	230	<5	<5			<5		<10	<5	<5	<5		<5	<5	<5	<5	28
MW-103	UG/L	8/19/1998	1600	220	<5	<5			<5		<10	<5	<5	<5		<5	<5	<5	<5	<10
MW-103	UG/L	1/27/1999	1900	110	<5	<5			<5		<10	<5	<5	<5		<5	<5	<5	<5	<10
MW-103	UG/L	7/19/1999	1800	61	1.1	<1			<1		<10	<1	<1	<1		<1	1.2	<1	<0.5	<0.5
MW-103	UG/L	1/12/2000	1500	81	<1	<1			1.2		<10	<1	<1	<1		<1	3	<1	4	<0.5
MW-103	UG/L	8/4/2000	520	<0.5	<1	<1			<1		<10	<1	<1	<1		<1	2.9	<1	1.5	0.75
MW-103	UG/L	2/9/2001	650	0.87	<1	<1			<1		<10	<1	<1	<1		<1	2.4	<1	<0.5	<0.5
MW-103	UG/L	7/25/2001	1300	41	<1	<1			2.5		<10	5.8	1.7	<1		<1	2.5	<1	<0.5	<0.5
MW-103	UG/L	5/8/2002	200	<0.5	<1	<1			<1	53000	<10	<1	<1	<1		<1	1.3	<1	<0.5	<0.5
MW-103	UG/L	9/25/2002	690	40	<1	<1			1.4	40000	<10	1.4	<1	<1		<1	1.6	<1	<0.5	<0.5
MW-103	UG/L	8/3/2006	350	<2	<2	<2	<2	<2	71	200	<5	<2	<2	<2		<2	<2	<2	<2	<5
MW-103	UG/L	11/8/2006	430	4.1	<2	<2	<2	<2	41	160	<5	<2	<2	<2		<2	<2	<2	<2	<5
MW-103	UG/L	2/8/2007	360	36	<2	<2	<2	<2	26	190	<5	<2	<2	<2		<2	<2	<2	<2	<5
MW-103	UG/L	5/9/2007	220	0.51	<2	<2	<2	<2	12	85	<5	<2	<2	<2		<2	0.93	<2	0.32	<5
MW-103	UG/L	8/8/2007	370	1.3	<2	0.51	0.7	<2	14	110	<5	<2	<2	<2		<2	1.4	<2	0.53	<5
MW-103	UG/L	11/6/2007	880	11	0.49	1.2	2.8	0.4	20	160	<0.41	0.24	0.39	<0.32		<0.27	2	<0.27	0.44	<0.3
	· · ·																			
MW-104	UG/L	6/1/1988		<5	<5	<5														
MW-104	UG/L	9/1/1988		<5	<5	<5														
MW-104	UG/L	12/1/1988		<5	<5	<5														
MW-104	UG/L	3/1/1989		<5	<5	<5														
MW-104	UG/L	6/1/1989		<5	<5	<5														
MW-104	UG/L	9/1/1989		<5	<5	<5														
MW-104	UG/L	12/1/1989		<5	<5	<5														
MW-104	UG/L	3/1/1990		<5	<5	<5												+		
MW-104	UG/L	6/1/1990		<5	<5	<5														
141 AA - TO-	JU/L	0/1/1000		\)	``	\)			<u> </u>	l .		<u> </u>			<u> </u>	<u>I</u>			I	i

Location	Unit	Date	TPH-g	В	Т	E	m/p-X	o-X	MTBE	ТВА	NAP	1,2,4-TMB	1.3.5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
MW-104	UG/L	9/1/1990		<5	<5	<u>-</u> <5	, p	• · ·	22	1271	10.0		2,0,0 11112	. 02	102	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	02,2 2 02				
MW-104	UG/L	12/1/1990		<5	<5	<5															
MW-104	UG/L	3/1/1991		<5	<5	<5															
MW-104	UG/L	6/1/1991		<5	<5	<5															
MW-104	UG/L	9/1/1991		<5	<5	<5															
MW-104	UG/L	12/1/1991		<5	<5	<5															
MW-104	UG/L	3/1/1992		<5	<5	<5															
MW-104	UG/L	6/1/1992		<5	<5	<5															
MW-104	UG/L	9/1/1992		<5	<5	<5															
MW-104	UG/L	12/1/1992		<5	<5	<5															
MW-104	UG/L	3/1/1993		<5	<5	<5															
MW-104	UG/L	5/1/1993		<5	<5	<5															
MW-104	UG/L	5/25/1993		<5	<5	<5															
MW-104	UG/L	9/1/1993		<5	<5	<5															
MW-104	UG/L	11/1/1993		<5	<5	<5															
MW-104	UG/L	3/1/1994		<5	<5	<5															
MW-104	UG/L	6/1/1994		<5	<5	<5 <5															
MW-104	UG/L	12/1/1994		<5	<5	<5															
MW-104	UG/L	3/1/1995		<5	<5	<5															
MW-104	UG/L	9/1/1995		3	<2	<2															
MW-104	UG/L	12/13/1995	<500	3	0.6	<5										0.78			2.7		
MW-104	UG/L	7/31/1996	<100	2.2	1.8	<1			<10					<0.3		<0.3	1.5		0.58	0.51	<0.3
MW-104	UG/L	12/16/1996	310	4.2	<1	<1			<2		<1	<1	<1	<1		<1	2.7		<1	<1	3.2
MW-104	UG/L	1/20/1998	<100	<5	<5	<5			<5		<10	<5	<5	<5		<5	<5		<5	<5	<10
MW-104	UG/L	8/18/1998	<100	<5	<5	<5			,,		<10	<5	<5			<5	<5		<5	<5	<10
MW-104	UG/L	1/27/1999	<100	<5	<5	<5			<5		<10	<5	<5			<5	<5		<5	<5	<10
10100 101	00,2	1,2,7,1333	1100	,5	, j	1,5			, j		120		1,5			13	,5		13	,,,	120
MW-104A	UG/L	7/19/1999	<500	<0.5	<1	<1			<1		<10	<1	<1	<1		<1	5.6		<1	1.2	<0.5
MW-104A	UG/L	1/13/2000	<500	<0.5	<1	<1			<1		<10	<1	<1	<1		<1	6.7		<1	<0.5	5.7
MW-104A	UG/L	8/2/2000	<500	<0.5	<1	<1			<1		<10	<1	<1	<1		<1	5.4		<1	<0.5	<0.5
MW-104A	UG/L	2/7/2001	<500	<0.5	<1	<1			<1		<10	<1	<1	<1		<1	4.2		<1	<0.5	<0.5
MW-104A	UG/L	7/25/2001	<100	<0.5	<1	<1			<1		<10	<1	<1	<1		<1	3.9		<1	<0.5	<0.5
MW-104A	UG/L	5/7/2002	100	<0.5	<1	<1			<1	31000	<10	<1	<1	<1		<1	4.3		<1	<0.5	<0.5
MW-104A	UG/L	9/24/2002	<100	<0.5	<1	<1			<1	20000	<10	<1	<1	<1		1.4	5.4		<1	<0.5	<0.5
MW-104A	UG/L	6/30/2004	<200	<5	<5	<5			<5	30J	110	<5	<5	<5		2J	8.1		<5	<5	<5
MW-104A	UG/L	10/7/2005	<100	<0.5	<1	<1	<1	<1	<1	83	<10	<1	<1	<1		<1	3.4		<1	<0.5	<0.5
MW-104A	UG/L	2/15/2006	<50	<1	<5	<5	<5	<5	<1	30	<5	<5	<5	<5		<5	2		<5	<5	<5
MW-104A	UG/L	2/7/2007	540	<2	<2	<2	<2	<2	<5	120	<5	<2	<2	<2		<2	<2		<2	<2	<5
MW-104A	UG/L	5/8/2007	33	<2	0.37	<2	<2	<2	<5	340	<5	<2	<2	<2		<2	1.8		<2	<2	<5
MW-104A	UG/L	8/8/2007	<50	<2	<2	<2	<2	<2	<5	150	<5	<2	<2	<2		0.51	2.9		<2	<2	<5
MW-104A	UG/L	11/5/2007	<30	<0.28	<0.36	<0.25	<0.6	<0.3	<0.32	81	<0.41	<0.23	<0.26	<0.32		0.71	4		<0.27	<0.28	<0.3
MW-104A	UG/L	2/4/2008	<50	<2	<2	<2	<2	<2	<5	71	<5	<2	<2	<2		0.91	5.2		<2	<2	<5
MW-104A	UG/L	1/16/2009	46	<2	<2	<2	1	<2	<5	23	<5	0.55	<2	<2		0.51	4.6		<2	<2	<5
MW-104A	UG/L	4/22/2009	<50	<2	<2	<2	<2	<2	<5	38	<5	<2	<2	<2		0.62	4.5		<2	<2	<5
MW-104A	UG/L	3/3/2010	<50	<0.50	<0.50	<0.50	``L	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	3.7		<1.0	<0.50	<1.0
MW-104A	UG/L	8/4/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	4.5		<1.0	<0.50	<1.0
MW-104A	UG/L	11/3/2010	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3.6	<1.0	<1.0	<0.50	<1.0
MW-104A	UG/L	2/2/2011	<50 <50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.1	<1.0	<1.0	<0.50	<1.0
MW-104A	UG/L	2/2/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.2	<1.0	<1.0	<0.50	<1.0
IVI VV-1U4A	UG/L	2/2/2011	\J U	\U.JU	\U.JU	\U.JU	\1.U	\U.JU	\1.U	/10	\1.U	\1.0	\1.U	\1.U	\1.U	\1.0	۷.۷	\1.U	\1.U	\U.JU	\1.U

Table III
Summary of Total Petroleum Hydrocarbon (TPH) and VOC Results
Former CENCO Refinery
Santa Fe Springs, CA

Location	Unit	Date	TPH-g	В	Т	E	m/p-X	o-X	MTBE	TBA	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
MW-104A	UG/L	4/14/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	1.0	<1.0	6.4	<1.0	<1.0	<0.50	<1.0
MW-104A	UG/L	8/24/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3.3	<1.0	<1.0	<0.50	<1.0
MW-104A	UG/L	11/10/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.4	<1.0	<1.0	<0.50	<1.0
MW-104A	UG/L	11/10/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.6	<1.0	<1.0	<0.50	<1.0
MW-104A	UG/L	2/9/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3.8	<1.0	<1.0	<0.50	<1.0
MW-105	UG/L	12/21/1995	<500	11	1.7	0.81								16			9.4		4.5	3.3	
MW-105	UG/L	7/31/1996	650	91	1.8	2			<10					24		<0.3	8.4		12	1.4	<0.3
MW-105	UG/L	12/16/1996	240	14	<5	<5			<2		<5	<5	<5	80		<5	10		<5	<5	<10
MW-105	UG/L	1/20/1998	510	21	<5	<5			<5		<10	<5	<5	150		<5	25		22	<5	<10
MW-105	UG/L	8/18/1998	680	53.6	<5	<5					<10	<5	<5	96.7		<5	25.3		15.4	<5	<10
MW-105	UG/L	1/25/1999	530	<5	<5	<5			<5		<10	<5	<5	125		<5	22		14	<5	6.43
MW-105	UG/L	7/19/1999	610	4.8	<1	<1			<1		<10	<1	<1	78		15	29		16	3.4	<0.5
MW-105	UG/L	1/10/2000	900	61	<5	<5			<5		<50	<5	<5	<5		62	40		20	4	<2.5
MW-105	UG/L	7/31/2000	580	52	<5	<5			<5		<9.5	<5	<5	<5		59	52		14	9.5	10
MW-105	UG/L	2/6/2001	610	<2.5	<5	<5			<5		<50	<5	<5	<5		21	33		12	<2.5	7.9
MW-105	UG/L	7/24/2001	210	1	<1	<1			<1		<10	<1		<1		11	18		9	1.5	<5
MW-105	UG/L	5/7/2002	530	1.1	<1	<1			<1	27000	<10	<1	<1	<2		6.8	14		4.4	<0.5	3.9
MW-105	UG/L	9/24/2002	<100	1.4	<1	<1			<1	<10000	<10	<1	<1	<3		6.4	25		4.9	1.4	14
MW-105	UG/L	6/30/2004	270	<5	<5	<5			<5	<100	<5	<5	<5	22		5.4	15		1J	<5	7.2
MW-105	UG/L	10/6/2005	300	<0.5	<1	<1	<1	<1	<1	25	<10	<1	<1	6.5		3.7	10		5.8	0.58	1.4
MW-105	UG/L	10/6/2005	320	<0.5	<1	<1	<1	<1	<1	31	<10	<1	<1	4.5		3.9	10		5.7	0.55	1.4
MW-105	UG/L	2/15/2006	205	<1	<5	<5	<5	<5	<1	27	<5	<5	<5	4.4		3.2	8.8		5.7	<5	<5
MW-105	UG/L	2/15/2006	204	<1	<5	<5	<5	<5	<1	27	<5	<5	<5	4		3	8.8		5.2	<5	<5
MW-105	UG/L	8/1/2006	320	<2	<2	<2	<2	<2	<5	51	<5	<2	<2	6		3.9	9.5		3.9	<2	<5
MW-105	UG/L	8/1/2006	330	<2	<2	<2	<2	<2	<5	57	<5	<2	<2	5.4		3.8	10		3.9	<2	<5
MW-105	UG/L	11/8/2006	230	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	17		4.1	8.9		3.8	<2	<5
MW-105	UG/L	11/8/2006	230	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	16		4.2	8.9		3.8	<2	<5
MW-105	UG/L	2/7/2007	160	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	19		4.8	12		4.2	<2	<5
MW-105	UG/L	2/7/2007	160	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	15		4.3	12		3.7	<2	<5
MW-105	UG/L	5/9/2007	150	<2	<2	<2	<2	<2	< 5	<50	<5	<2	<2	12		2.7	7.5		2.6	0.31	0.59
MW-105	UG/L	5/9/2007	190	<2	<2	<2	<2	<2	<5	<50	<5 -	<2	<2	12		2.8	7.5		2.6	0.34	0.57
MW-105	UG/L	8/7/2007	250	<2	<2	<2	<2	<2	0.32	<50	<5	<2	<2	23		5.6	11		3.7	0.6	1.1
MW-105		11/5/2007	180	0.35	<0.36	<0.25	<0.6	<0.3	<0.32	<4.9	0.56	<0.23	<0.26	19		5.5	9.6		3.3	0.53	1.2
MW-105	UG/L	2/5/2008	170	1.2	<2	<2	<2	<2	<5 .5	<50	<5	<2	<2	25		6.9	11		2.6	1.1	2.3
MW-105	UG/L	2/5/2008	190	1.1	<2	<2	<2	<2	<5 .5	<50	<5	<2	<2	24		6.5	10		2.6	1.1	2.3
MW-105	UG/L	1/15/2009	160	0.85	<2	<2	<2	<2	<5 	<50	<5	<2	<2	41		3.2	10		2.6	1	2.6
MW-105	UG/L	1/15/2009 4/22/2009	180 120	0.71	<2	<2	<2	<2	<5	<50 <50	<5	<2	<2	35		2.9 3	9		2.5 2.4	0.86	2.3
MW-105	UG/L			0.66	<2	<2	<2	<2	<5		<5	<2	<2	22		_	9.5			1.2	1.9
MW-105	UG/L	4/22/2009	100	0.5	<2	<2	<2	<2	<5	<50	<5	<2	<2	16		2.1	7.3		1.7	1	1.3
MW-106	UG/L	12/20/1995	790	12	3.5	10										15	33				
MW-106	UG/L	7/31/1996	600	14	2.2	9			3.6					<0.3		17	26		<0.3	<0.3	0.98
MW-106	UG/L	12/17/1996	360	3.1	<2	<2			<2		<2	<2	<2	<2		26	63		<2	<2	<4
MW-106	UG/L	1/20/1998	800	24	<5	8.1			<5		<10	<5	<5	<5		10	46		<5	<5	<10
MW-106	UG/L	8/20/1998	1000	27	<5	84			<5		<10	<5	<5	<5		5.8	430		<5	<5	<10
MW-106	UG/L	1/27/1999	1100	21000	<5	8.5			<5		<10	<5	<5	<5		<5	47		<5	<5	<10
MW-106	UG/L	7/19/1999	890	18	<1	7.7			<1		<10	<1	<1	<1		6.4	39		1.7	<0.5	<0.5
MW-106	UG/L	1/14/2000	1000	4.1	<1	<1			<1		<10	<1	<1	<1		9.6	20		2.2	<0.5	<0.5

Table III
Summary of Total Petroleum Hydrocarbon (TPH) and VOC Results
Former CENCO Refinery
Santa Fe Springs, CA

Location	l lmit	Data	TDII ~	В	T -	F	/ V	. V	NATRE	TDA	NAD	1 2 4 TNAD	1 2 F TNAD	DCE	TCF	t1.2-DCE	-1 2 DCF	1,1-DCE	1 1 DCA	1.2.004	VC
Location MW-106	Unit UG/L	Date 7/31/2000	TPH-g <500	5.3	-1		m/p-X	o-X	MTBE	TBA	NAP <10	1,2,4-TMB	1,3,5-TMB	PCE 21	TCE	- /	c1,2-DCE 26	1,1-DCE	1,1-DCA	1,2-DCA <0.5	VC 25
MW-106	-	2/6/2001	530	2.3	<1	<1 1.3			<1			<1	<1			21 25	35		2.7	<0.5	15
	UG/L				<1				<1		<10	<1	<1	<1		1					
MW-106	UG/L	7/24/2001	470	1.7	<1	<1			<1	20000	<10	<1	<1	<1		23	33		1.8	<0.5	<0.5
MW-106	UG/L	5/7/2002	430	2.4	<1	<1			<1	38000	<10	<1	<1	<1		17	22		1.6	<0.5	15
MW-106	UG/L	9/24/2002	120	3.5	<1	<1			<1	28000	<10	<1	<1	<1		24	24		2.1	<0.5	21
MW-106	UG/L	7/1/2004	260	2.3J	0.77	1.1			<5	<100	<5	<5	<5	<5		21	15		2J	<5	<5
		0/0/0000	212	2.5					_							-	- 10				
MW-106A	UG/L	8/2/2006	310	2.6	<2	<2	<2	<2	<5 -	<50	<5 -	<2	<2	<2		21	13		<2	<2	10
MW-106A	UG/L	11/9/2006	82	<2	<2	<2	<2	<2	<5 -	<50	<5 -	<2	<2	<2		17	14		<2	<2	7
MW-106A	UG/L	2/8/2007	270	2.6	<2	<2	<2	<2	<5 -	<50	<5 -	<2	<2	<2		20	15		<2	<2	13
MW-106A	UG/L	5/10/2007	210	1.5	<2	0.28	<2	<2	< 5	20	<5	<2	<2	<2		12	9.9		0.6	<2	7.9
MW-106A	UG/L	8/9/2007	270	1.6	<2	0.6	<2	<2	<5	19	0.69	<2	<2	<2		14	12		0.83	<2	12
MW-106A	UG/L	11/7/2007	240	1.4	<0.36	0.84	<0.6	<0.3	<0.32	20	1.6	<0.23	<0.26	<0.32		9.5	11		0.7	<0.28	9.9
MW-106A	UG/L	2/5/2008	220	1.6	<2	0.42	<2	<2	<5	16	1.8	<2	<2	<2		7.8	10		0.73	<2	10
MW-106A	UG/L	1/19/2009	220	0.46	<2	<2	<2	<2	<5	17	<5	<2	<2	<2		11	13		0.99	<2	6.3
MW-106A	UG/L	4/23/2009	290	1.9	<2	3.7	<2	<2	<5	18	0.93	<2	<2	<2		6.3	5.5		0.82	<2	10
MW-106A	UG/L	3/5/2010	590	8.4	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		2.0	3.5		<1.0	<0.50	<1.0
MW-106A	UG/L	5/13/2010	460	8.6	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		2.0	<1.0		<1.0	<0.50	21
MW-106A	UG/L	8/6/2010	450	12	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		3.5	1.0		1.2	<0.50	25
MW-106A	UG/L	11/4/2010	630	0.64	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.5	<1.0	<1.0	<0.50	8.8
MW-106A	UG/L	2/3/2011	570	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-106A	UG/L	4/19/2011	480	0.63	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	<1.0	<1.0	<0.50	6.9
MW-106A	UG/L	8/25/2011	540	0.51	<0.50	<0.50	<1.0	<0.50	<1.0	26	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	4.8
MW-106A	UG/L	11/14/2011	440	0.87	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-106A	UG/L	2/3/2012	440	2.7	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	11
MW-107	UG/L	12/21/1995	<500	16	0.99	0.77										6.5	28				
MW-107	UG/L	7/31/1996	600	31	4.4	6.6			110					<0.3		19	31		<0.3	<0.3	1.1
MW-107	UG/L	12/17/1996	380	22	<5	<5			<2		<5	<5	<5	<5		33	80		<5	<5	<10
MW-107	UG/L	1/20/1998	830	42	<5	<5			<5		<10	<5	<5	<5		47	120		<5	<5	<10
MW-107	UG/L	8/20/1998	830	28	<5	<5			<5		<10	<5	<5	<5		25	98		<5	<5	<10
MW-107	UG/L	1/27/1999	1100	36	<5	<5			<5		<10	<5	<5	<5		44	100		<5	<5	<10
MW-107	UG/L	7/19/1999	820	38	<5	<5			<5		<50	<5	<5	<5		77	120		<5	<2.5	<2.5
MW-107	UG/L	1/12/2000	1700	87	<1	7.8			<1		<10	<1	<1	<1		110	120		1.6	<0.5	<0.5
MW-107	UG/L	7/31/2000	1700	250	<5	20			<5		<50	<5	<5	<5		59	43		8.3	<2.5	53
MW-107	UG/L	2/6/2001	2100	180	<1	4			<1		<10	<1	<1	<1		4.5	45		20	<0.5	21
MW-107	UG/L	7/26/2001	2000	220	<1	38			<2		<10	<1	<1	<1		13	33		33	<0.5	<0.5
MW-107	UG/L	5/9/2002	2100	310	<2	3			<2	26000	<20	<2	<2	<2		5.7	8.8		21	<1	30
MW-107	UG/L	9/25/2002	2200	770	<2	5.7	<0.5	<0.5	<2	20000	<20	<2	<2	<2		<2	5.8		30	<1	28
MW-107	UG/L	7/1/2004									2J	<5	<5	<5		<5	<5		14	<5	12
MW-107A	UG/L	8/2/2006	770	3.7	<2	<2	3.4	<2	<5	<50	<5	<2	<2	<2		2.4	3.9		<2	<2	<5
MW-107A	UG/L	11/9/2006	780	24	<2	4.7	9.1	<2	<5	<50	<5	<2	<2	<2		5.3	6.2		<2	<2	<5
MW-107A	UG/L	2/8/2007	500	80	<2	21	25	<2	<5	<50	7.4	<2	<2	<2		7.4	9.6		<2	<2	<5
MW-107A	UG/L	5/10/2007	670	42	1	14	17	<2	<5	21	6	<2	0.29	<2		6	6.6		<2	<2	2
MW-107A	UG/L	8/9/2007	1000	61	2	15	41	<2	<5	18	8.5	<2	0.33	<2		9.5	8.8		0.31	<2	2.3
MW-107A	UG/L	11/7/2007	1500	44	4.2	16	26	<0.3	<0.32	35	11	<0.23	0.49	<0.32		9.4	6.4		0.3	<0.28	4.4
MW-107A	UG/L	2/5/2008	2800	19	3	3	12	<2	<5	37	3.9	<2	0.38	<2		9.2	5.6		0.29	<2	5
MW-107A	UG/L	1/19/2009	1200	12	1.9	1.6	9.6	0.38	<5	62	1.3	<2	0.27	<2		7.5	7.2		<2	<2	1.8

Location	Unit	Date	TPH-g	В	т	E	m/p-X	o-X	MTBE	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
Location MW-107A	UG/L	1/19/2009	1100	13	1.9	1.5	9.9	0.43	<5	66	1.1	1,2,4-1101B	0.29	<2	ICE	7.3	6.8	1,1-DCE		1,2-DCA <2	2
MW-107A	UG/L	4/23/2009	2400		1.2	13	91	0.43	<5	66	7.5	3	2.7	<2		11	9.4		<2	<2	1.3
MW-107A	UG/L	4/23/2009	1300	74	1.1	13	94	0.47	<5	67	6.6	3.2	2.8	<2		10	8.5		<2	<2	1.3
MW-107A	-	3/5/2010	1100		0.68	1.6	54	<0.50			6.0					7.6			<1.0		
MW-107A	UG/L UG/L		1300	17	0.66	1.7		<0.50	<1.0 <1.0	<10 <10	5.6	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0		7.6	6.8 6.4		<1.0	<0.50 <0.50	<1.0 <1.0
		3/5/2010		16								}									
MW-107A	UG/L	5/13/2010	1500	7.6	11	4.1		2.0	4.7	<10	3.3	2.0	<1.0	<1.0		4.7	4.8		<1.0	<0.50	<1.0
MW-107A	UG/L	5/13/2010	1100	8.8	11	4.2		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		5.9	5.9		<1.0	<0.50	<1.0
MW-107A	UG/L	8/6/2010	1300	120	150	39		1.3	<1.0	<10	24	1.9	<1.0	<1.0		7.5	10		<1.0	<0.50	<1.0
MW-107A	UG/L	8/6/2010	1300	120	160	39	20	1.3	<1.0	<10	29	1.9	<1.0	<1.0	7.5	7.0	9.5	-11.0	<1.0	<0.50	<1.0
MW-107A	UG/L	11/4/2010	1400	39	11	16	29	<0.50	<1.0	<10	4.1	<1.0	<1.0	<1.0	7.5	5.8	7.7	<1.0	<1.0	<0.50	<1.0
MW-107A	UG/L	11/4/2010	1600	36	10	14	26	<0.50	<1.0	<10	4.2	<1.0	<1.0	<1.0	7.1	5.1	6.9	<1.0	<1.0	<0.50	<1.0
MW-107A	UG/L	2/3/2011	740	4.1	2.2	3.2	14	<0.50	<1.0	<10	1.2	<1.0	<1.0	<1.0	3.3	2.4	3.2	<1.0	<1.0	<0.50	<1.0
MW-107A	UG/L	4/19/2011	1200	2.4	0.90	1.2	4.7	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	5.4	3.6	5.0	<1.0	<1.0	<0.50	<1.0
MW-107A	UG/L	4/19/2011	1200	2.6	0.99	1.2	5.2	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	5.9	4.2	5.9	<1.0	<1.0	<0.50	<1.0
MW-107A	UG/L	8/25/2011	590	0.95	<0.50	<0.50	1.8	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	2.4	1.7	3.4	<1.0	<1.0	<0.50	<1.0
MW-107A	UG/L	8/25/2011	480	0.84	<0.50	<0.50	1.4	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	1.9	1.4	3.0	<1.0	<1.0	<0.50	<1.0
MW-107A	UG/L	11/14/2011	550	1.0	<0.50	<0.50	1.6	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	2.0	<1.0	4.8	<1.0	<1.0	<0.50	<1.0
MW-107A	UG/L	1/31/2012	500	0.97	0.54	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	3.6	2.6	7.8	<1.0	<1.0	<0.50	<1.0
		6/1/1000		1000	150	_															
MW-201	UG/L	6/1/1988		1000	150	<5															
MW-201	UG/L	9/1/1988		520	210	110															
MW-201	UG/L	12/1/1988		420	65	19															
MW-201	UG/L	3/1/1989		210	27	24															
MW-201	UG/L	6/1/1989		350	<5	<5															
MW-201	UG/L	9/1/1989		830	100	32															
MW-201	UG/L	12/1/1989		510	76	24															
MW-201	UG/L	3/1/1990		350	38	29															
MW-201	UG/L	6/1/1990		820	49	84															
MW-201	UG/L	9/1/1990		340	15	20															
MW-201	UG/L	12/1/1990		240	12	7															
MW-201	UG/L	3/1/1991		500	< 5	< 5															
MW-201	UG/L	6/1/1991		530	<5 -	<5 -															
MW-201	UG/L	9/1/1991		370	<5	<5															
MW-201	UG/L	12/1/1991		340	10	9															
MW-201	UG/L	6/1/1992		25	<5 .5	<5 .5															
MW-201	UG/L	9/1/1992		350	<5	<5															
MW-201	UG/L	12/1/1992		1150	<5	<5															
MW-201	UG/L	3/1/1993		560	77	<50															
MW-201	UG/L	12/1/1994		1300	66	500															
MW-201	UG/L	3/1/1995		290	<5	<5															
MW-201	UG/L	9/1/1995	0000	1100	28	130										4 -	4.4		0.4		
MW-201	UG/L	12/13/1995	9000	440	42	120			40					58		1.7	44		9.4	4.4	.0.0
MW-201	UG/L	7/31/1996	<100	480	20	32			<10			4 : 5	0.5	110		<0.3	34		9.4	2.7	<0.3
MW-201	UG/L	12/17/1996	3700	110	12	96			<10		<10	140	28	210		<10	89		<10	<10	<20
MW-201	UG/L	1/21/1998	2600	250	14	87			<5		11	20	9.9	160		5.5	71		9.9	<5 -	<10
MW-201	UG/L	8/18/1998	2600	440	8.6	20					11	<5	<5	16		<5	63		6.3	<5	<10
MW-201	UG/L	7/19/1999	2800	160	29	69			<5		<50	53	15	40		12	63		9.3	<2.5	<2.5
MW-201	UG/L	1/12/2000	5100	520	14	53			<6		<50	32	< 5	<5		< 5	43		< 5	<2.5	<2.5
MW-201	UG/L	8/4/2000	2900	570	15	61			<7		<10	33	<5	<5		<5	76		<5	<2.5	<2.5

Location	Unit	Date	TPH-g	В	Т	Е	m/p-X	o-X	MTBE	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
MW-201	UG/L	2/9/2001	2200	310	12	130	, [<8	1211	<100	24	<10	<10		<10	100		<10	<5	<5
MW-201	UG/L	7/26/2001	3200	180	9.6	56			<10		<100	17	2.5	<10		6.8	57		23	<5	<10
MW-201	UG/L	5/9/2002	1800	120	6.6	45			5.1	<20000	<20	5.6	3.8	<2		4.2	33		<2	<1	1.1
MW-201	UG/L	9/26/2002	890	11	11	68			<1	<10000	<1	12	14	<1		3.3	27		<1	<0.5	1.4
MW-201	UG/L	6/30/2004	1700	120	12	210	58	13	<5	<100	16	5.4	12	<5		<5	21		<5	<5	2J
MW-201	UG/L	10/7/2005	3400	740	37	470	73	18	<5	130	120	33	16	<5		<5	49		<5	34	<2.5
MW-201	UG/L	2/15/2006	1890	128	2.5	15	6.3	<5	<1	20	<5	1.2	<5	<5		<5	8.1		<5	<5	<5
MW-201	UG/L	8/2/2006	1000	73	<2	8.2	4.1	<2	<5	<50	<5	<2	<2	<2		<2	13		<2	<2	<5
MW-201	UG/L	11/9/2006	1100	58	3.4	49	11	2.9	<5	<50	22	4.8	<2	<2		<2	25		<2	<2	<5
MW-201	UG/L	2/7/2007	1100	94	<2	8.6	5.1	<2	<5	<50	<5	<2	<2	<2		<2	25		<2	<2	<5
MW-201	UG/L	5/9/2007	830	47	0.75	4	2.6	<2	<5	<50	<5	<2	<2	<2		<2	38		0.4	0.83	0.67
MW-201	UG/L	8/8/2007	1300	44	0.75	5.1	3.3	<2	<5	<50	<5	0.41	0.42	<2		<2	31		0.37	1	0.9
MW-201	UG/L	11/6/2007	1500	110	3.9	57	30	5.9	<0.32	92	25	6.3	8.4	<0.32		0.91	38		0.52	1.1	1.6
MW-201	UG/L	2/7/2008	670	39	<2	3.2	<2	<2	<5	<50	<5	<2	<2	<2		<2	33		<2	<2	<5
MW-201	UG/L	1/20/2009	1400	97	3.9	17	19	1	<5	44	<5	2.4	1.7	<2		0.6	16		<2	2.1	1.6
MW-201	UG/L	4/28/2009	510	70	1.1	15	1.2	<2	<5	12	<5	0.7	3.5	<2		<2	12		<2	2.2	0.79
MW-202	UG/L	11/1/1993		7700	<500	2600															
MW-202	UG/L	3/1/1995		400	7	29															
MW-202	UG/L	9/1/1995		500	10	48															<u> </u>
MW-202	UG/L	12/1/1995	6500	330	21	51															
MW-202	UG/L	7/31/1996	4800	640	15	<0.5			62					<0.3		0.34	2		0.54	0.58	<0.3
MW-202	UG/L	12/17/1996	7400	890	<50	<50			<20		<50	<50	<50	<50		<50	<50		<50	<50	<10
MW-202	UG/L	1/21/1998	1600	450	< 5	19			<5		<10	<5	< 5	< 5		< 5	< 5		<5	< 5	<10
MW-202	UG/L	8/18/1998	3100	280	< 5	< 5			< 5		<10	< 5	< 5	< 5		<5 -	< 5		< 5	< 5	<10
MW-202	UG/L	1/27/1999	2300	76	<5	<5			<5		<10	<5	<5	<5		<5	<5		<5	<5	<10
MW-202	UG/L	7/19/1999	2300	36	2.1	3.7			<2		<20	<2	<2	<2		<2	3.3		<2	<1	<1
MW-202	UG/L	1/11/2000	2400	49	<1	2.4			1.2		<10	<1	<1	<1		<1	1.9		2.2	<0.5	<0.5
MW-202	UG/L	2/7/2000	1100	25	<1	<1			<1		<10	<1	<1	<1		<1	2.3		7.3	<0.5	3.3
MW-202	UG/L	8/2/2000	1400	41	<1	<1			<1		<10	<1	<1	<1		<1	4.6		11	<0.5	<0.5
MW-202	UG/L	7/24/2001	1100	38	<1	<1			<1	66000	<10	<1	<1	<1		<1	<1		1.8	<0.5	<0.5
MW-202 MW-202	UG/L UG/L	5/8/2002 9/26/2002	1400 1000	330 170	2.9 7.8	2.1			16 12	66000 59000	<10 <50	<1 <5	<1 <5	<1 <5		<1 <5	<1 <5		1.2 <5	<0.5 <2.5	<0.5 <2.5
10100-202	UG/L	9/20/2002	1000	170	7.0	14			12	39000	\30	\3	/)			\3	/)		\)	\2.3	\2.3
MW-203	UG/L	6/1/1988		46	<5	<5															
MW-203	UG/L	9/1/1988		76	<5	<5															
MW-203	UG/L	12/1/1988		64	<5	<5			 												
MW-203	UG/L	3/1/1989		110	<5	<5															
MW-203	UG/L	6/1/1989		110	<5	<5			 												
MW-203	UG/L	9/1/1989		80	<5	5			<u> </u>												
MW-203	UG/L	12/1/1989		100	<5	<5															
MW-203	UG/L	3/1/1990		90	<5	<5															
MW-203	UG/L	6/1/1990		88	2	7			1												
MW-203	UG/L	9/1/1990		130	<5	9															
MW-203	UG/L	12/1/1990		94	<5	7															
MW-203	UG/L	3/1/1991		100	<5	<5															
MW-203	UG/L	6/1/1991		100	<5	<5															
MW-203	UG/L	9/1/1991		140	<5	<5															
MW-203	UG/L	12/1/1991		130	<5	<5															

Location	l lmit	Dete	TDII a	В	т	E	/ V	. V	MATRE	TDA	NAD	1 2 4 TN4D	1 2 F TMD	DCF	TCF	+1 2 DCF	-1 2 DCF	1.1 DCF	1.1.004	1 2 DCA	VC
Location	Unit	Date 2/1/1002	TPH-g		<u> </u>	_	m/p-X	o-X	MTBE	TBA	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
MW-203	UG/L	3/1/1992		120	<5 .5	<5 .rs															
MW-203	UG/L	6/1/1992		85	<5 .5	<5 .5															
MW-203	UG/L	9/1/1992		46	<5 .rs	<5 .rs															
MW-203	UG/L	12/1/1992		64	<5	<5															
MW-203	UG/L	3/1/1993		69	<5	<5															
MW-203	UG/L	5/1/1993		86	<5 -	< 5															
MW-203	UG/L	5/25/1993		86	<5 -	<5 -															
MW-203	UG/L	9/1/1993		40	< 5	< 5															
MW-203	UG/L	12/1/1994		39	<5	<5															
MW-203	UG/L	3/1/1995		27	<5	<5															
MW-203	UG/L	9/1/1995		28	<2	<2															
MW-203	UG/L	12/13/1995	640	37	1	12										4.5	40		0.61		1.4
MW-203	UG/L	7/31/1996	500	43	2	1.8			<20					<0.3		1.7	22		0.34	<0.3	2
MW-203	UG/L	12/17/1996	160	30	<1	<1			<2		<1	<1	<1	<1		<1	<1		<1	<1	<2
MW-203	UG/L	1/20/1998	250	24	<5	<5			<5		<10	<5	<5	<5		<5	28		<5	<5	<10
MW-203	UG/L	8/20/1998	290	17	<5	<5			<5		<10	<5	<5	<5		<5	35		<5	<5	<10
MW-203	UG/L	1/27/1999	330	12	<5	<5			<5		<10	<5	<5	<5		<5	35		<5	<5	<10
MW-203	UG/L	7/19/1999	<500	16	<1	<1			<1		<10	<1	<1	<1		1.9	24		<1	<0.5	<0.5
MW-203	UG/L	1/12/2000	<500	7.8	<1	<1			1		<10	<1	<1	<1		<1	14		<1	0.53	<5
MW-203	UG/L	7/31/2000	<500	97	<1	<1			<5		<10	<1	<1	<1		<1	16		<1	<0.5	0.51
MW-203	UG/L	2/6/2001	<500	13	<1	<1			<1		<10	<1	<1	<1		1.6	25		<1	<0.5	1.1
MW-203	UG/L	7/24/2001	180	14	<1	<1			<1		<10	<1	<1	<1		1.8	24		<1	<0.5	8.3
MW-203	UG/L	5/8/2002	150	8.7	<1	<1			<1	30000	<10	<1	<1	<2		1.7	21		<1	<0.5	0.53
MW-203	UG/L	9/25/2002	160	11	<1	<1			<1	25000	<10	<1	<1	<3		2.5	27		<1	<0.5	1.1
MW-203	UG/L	7/1/2004	270	9.2	0.5J	0.75	<0.5	<0.5	<5	<100	<5	<5	<5	<5		4J	24		<5	<5	<5
MW-203	UG/L	8/2/2006	240	3.1	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		4.4	18		<2	<2	11
MW-203	UG/L	11/9/2006	260	2.5	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		4.8	20		<2	<2	10
MW-203	UG/L	2/8/2007	150	2	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		3.4	21		<2	<2	9.7
MW-203	UG/L	5/10/2007	170	1	<2	<2	<2	<2	0.7	28	<5	<2	<2	<2		2.8	14		0.75	<2	7.8
MW-203	UG/L	8/9/2007	270	0.88	<2	<2	<2	<2	0.59	27	<5	<2	<2	<2		2.4	16		0.77	<2	8.5
MW-203	UG/L	11/7/2007	65	0.78	<0.36	<0.25	<0.6	<0.3	0.69	28	<0.41	<0.23	<0.26	<0.32		2.5	18		0.76	<0.28	8
MW-203	UG/L	2/5/2008	87	1.4	<2	<2	<2	<2	0.63	32	<5	<2	<2	<2		2.4	19		0.77	<2	8.7
MW-203	UG/L	1/19/2009	65	0.53	<2	<2	<2	<2	0.84	40	<5	<2	<2	<2		3	20		0.92	<2	7.6
MW-203	UG/L	4/23/2009	69	0.63	<2	<2	<2	<2	3.1	36	<5	<2	<2	<2		1.8	12		0.58	<2	4.9
	•																				·
MW-204	UG/L	6/1/1988		19	<5	<5															
MW-204	UG/L	9/1/1988		6	<5	<5															
MW-204	UG/L	12/1/1988		33	<5	<5															
MW-204	UG/L	3/1/1989		39	<5	<5											 				
MW-204	UG/L	6/1/1989		76	<5	<5											†				
MW-204	UG/L	9/1/1989		64	<5	<5															
MW-204	UG/L	12/1/1989		160	<5	<5															
MW-204	UG/L	3/1/1990		9	<5	<5															
MW-204	UG/L	6/1/1990		2	<5	<5			 												
MW-204	UG/L	9/1/1990		25	<5	<5											 				
MW-204	UG/L	12/1/1990		<5	<5	<5															
MW-204	UG/L	3/1/1991		<5	<5	<5															
MW-204	UG/L	6/1/1991		<5	<5	<5															
									 	 											
MW-204	UG/L	9/1/1991		27	<5	<5										1					i

1 1	11	D-t-	TOU -		-	-	/ V	- V	NATRE .	TDA	NAD	4 2 4 TMAD	4 2 5 7040	DOF	TOF	14 2 DOE	-4.2 DOF 4.4	1 005	4.4.004	4.2.004	\/C
Location	Unit	Date	TPH-g	B		E	m/p-X	o-X	MTBE	TBA	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE 1,3	1-DCE	1,1-DCA	1,2-DCA	VC
MW-204	UG/L	12/1/1991		47	< 5	< 5			ļ							ļ					
MW-204	UG/L	3/1/1992		90	<5	< 5			ļ							ļ					
MW-204	UG/L	6/1/1992		110	71	<5															
MW-204	UG/L	9/1/1992		90	20	<5															
MW-204	UG/L	12/1/1992		2700	3700	<5															
MW-204	UG/L	4/1/1993		130	28	21															
MW-204	UG/L	5/1/1993		780	<50	<50															
MW-204	UG/L	5/25/1993		780	<50	<50															
MW-204	UG/L	12/1/1994		5500	630	190															
MW-204	UG/L	3/1/1995		5000	77	120															
MW-204	UG/L	9/1/1995		6900	4700	650															
MW-204	UG/L	12/13/1995 1	.2000000	880	670	240															
MW-204	UG/L	8/1/1996	14000	1400	1300	520			32					<1		<1	2.9		3.3	7.2	5.2
MW-204	UG/L	12/17/1996	2100	750	58	<50			<200		<50	<50	<50	<50		<50	<50		<50	<50	<100
MW-204	UG/L	1/21/1998	6000	2300	79	210			5.1		65	90	23	<5		<5	<5		<5	<5	9
MW-204	UG/L	8/21/1998	11000	5100	510	520			<50		<100	200	<50	<50		<50	<50		<50	150	<100
MW-204	UG/L	1/28/1999	10000	3300	120	530			5.2		94	250	61	<50		<50	<50		<50	<50	12
MW-204	UG/L	7/19/1999	1900	560	<10	110			27		<100	47	11	<10		<10	<10		<10	<5	<5
MW-204	UG/L	1/11/2000	2100	270	<10	<10			<10		<100	<10	<10	<10		<10	<10		<10	<5	<5
MW-204	UG/L	8/3/2000	1300	400	<5	12			<5		<10	<5	<5	<5		<5	<5		<5	<2.5	<2.5
MW-204	UG/L	2/8/2001	1200	55	1.4	<1			<1		<10	<1	<1	<1		<1	<1		<1	<0.5	<0.5
MW-204	UG/L	7/24/2001	1200	200	<1	12			1.6		<10	<1	<1	<1		<1	1.5		4.7	<0.5	<0.5
MW-204	UG/L	5/9/2002	1400	250	37	120			<2	170000	<20	26	8.9	<2		<2	2.7		3.5	<1	3.5
MW-204	UG/L	9/26/2002	560	67	2.5	19			<2	200000	<20	22	7.7	<2		<2	3.6		<2	<1	3.4
MW-204	UG/L	6/30/2004	260	30	<5	7.6	6	<0.5	<5	150	4J	6.8	2J	<5		<5	4J		<5	<5	<5
MW-204	UG/L	10/7/2005	340	5.7	<1	4.2	2.1	<1	<1	90	<10	2.3	1.2	<1		<1	3.4		<1	1.6	<0.5
MW-204	UG/L	2/15/2006	111	1.5	<5	2.5	1.4	<5	<1	91	<5	2.6	1.2	<5		<5	2.6		<5	<5	<5
MW-204	UG/L	8/1/2006	260	<2	<2	9.5	8.1	<2	<5	67	<5	14	6.7	<2		<2	3.9		<2	<2	<5
MW-204	UG/L	11/10/2006	81	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	5.5		<2	<2	<5
MW-204	UG/L	2/7/2007	360	4.9	<2	11	14	<2	<5	64	5.6	25	16	<2		<2	2.8		<2	<2	<5
MW-204	UG/L	11/6/2007	53	<0.28	<0.36	<0.25	<0.6	<0.3	<0.32	81	<0.41	0.65	0.42	<0.32		<0.27	2.2		<0.27	0.4	<0.3
MW-204	UG/L	2/4/2008	37	<2	<2	<2	<2	<2	<5	71	0.42	0.38	<2	<2		<2	1.6		<2	0.37	<5
MW-204	UG/L	4/23/2009	110	<2	<2	<2	<2	<2	<5	71	0.51	0.74	0.84	<2		<2	5.9		<2	<2	<5
	•																				
MW-205	UG/L	6/1/1988		13	<5	<5															
MW-205	UG/L	9/1/1988		27	<5	<5															
MW-205	UG/L	12/1/1988		120	<5	<5															
MW-205	UG/L	3/1/1989		40	<5	<5															
MW-205	UG/L	6/1/1989		120	<5	<5															
MW-205	UG/L	9/1/1989		81	<5	<5															
MW-205	UG/L	12/1/1989		170	<5	<5															
MW-205	UG/L	3/1/1990		140	<5	<5															
MW-205	UG/L	6/1/1990		56	<5	<5															
MW-205	UG/L	9/1/1990		45	<5	<5															
MW-205	UG/L	12/1/1990		47	<5	<5															
MW-205	UG/L	3/1/1991		40	<5	<5															
MW-205	UG/L	6/1/1991		<5	<5	<5															
MW-205	UG/L	9/1/1991		43	<5	<5															
MW-205	UG/L	12/1/1991	+	85	<5	<5															
14144-703	00/1	14/1/1991		0J	\)	\J		l	1							<u> </u>					

Location	Unit	Date	TPH-g	В	т	E	m/p-X	o-X	MTBE	ТВА	NAP	1,2,4-TMB	1 2 5-TMR	PCE	TCE	t1,2-DCE	c1,2-DCE 1,1-D	CE 1,1-DCA	1,2-DCA	VC
MW-205	UG/L	3/1/1992	irii-g	35	< 5	- <5	ιιι/ μ-λ	U-X	IVITOL	IDA	IVAF	1,2,4-11010	1,3,3-11415	PCL	ICL	(1,2-DCL	C1,2-DCL 1,1-D	1,1-DCA	1,2-DCA	VC
MW-205	UG/L	6/1/1992		6	<5	<5														
MW-205	UG/L	9/1/1992		5	<5	<5														
MW-205	UG/L	12/1/1992		10	<5	<5														
MW-205	UG/L	3/1/1993		<5	<5	<5														\vdash
MW-205	UG/L	5/1/1993		22	<5	<5														\vdash
MW-205	UG/L	5/25/1993		22	<5															\vdash
	UG/L	11/1/1993		32		<5 <5														\vdash
MW-205 MW-205	UG/L	12/1/1994		<5	<5 <5	<5 <5												+		\vdash
-		+																+		\vdash
MW-205	UG/L	3/1/1995		<5 5.2	<5 <2	<5 <2												+		\vdash
MW-205	UG/L	9/1/1995	2100	5.3	<2	<2								2.0		F 2	F.1	7.2	2	
MW-205	UG/L	12/13/1995	2100	110	1.3	18			-10					2.8		5.3	51	7.3	2	10.2
MW-205	UG/L	7/31/1996	<100	5.1	<2	<2			<10				-2	3.5		<0.3	30	2.8	<0.3	<0.3
MW-205	UG/L	12/16/1996	270	<2	<2	<2			2		<2	<2	<2	<2		<2	35	<2	<2	<4
MW-205	UG/L	1/20/1998	190	<5 .5	<5 .5	<5 .5			<5 .5		<10	<5 .5	<5 .5	<5		<5 -5	27	<5	<5	<10
MW-205	UG/L	8/21/1998	17	<5	<5 -	<5 -			<5 -		<10	<5 -	<5 -	<5 -		<5 -	32	<5	<5 -	<10
MW-205	UG/L	1/26/1999	220	6.87	<5	<5			<5		<10	<5	<5	<5		<5	26.1	<5	<5	<10
MW-205	UG/L	7/19/1999	<500	10	<1	<1			<1		<10	<1	<1	<1		1.8	23	<1	<0.5	<0.5
MW-205	UG/L	1/11/2000	790	26	1.3	2			<1		<10	<1	<1	<1		<1	13	<1	<0.5	13
MW-205	UG/L	8/2/2000	<500	11	<1	<1					<10	<1	<1	<1		<1	6	<1	<0.5	<0.5
MW-205	UG/L	2/7/2001	540	37	<1	12			<1		<10	1.7	8.5	<1		<1	5.2	<1	<0.5	0.96
MW-205	UG/L	7/26/2001	380	21	<1	1.1			<1		<10	<1	<1	<1		<1	17	<1	<0.5	<0.5
MW-205	UG/L	5/8/2002	260	9.7	<1	<1			<1	<10000	<10	<1	<1	<1		<1	22	<1	<0.5	0.65
MW-205	UG/L	9/25/2002	300	24	<1	<1			<1	4000	<10	<1	1.1	<1		<1	10	<1	<0.5	4.7
MW-205	UG/L	6/30/2004	<200	3J	<5	<5	<0.5	<0.5	<5	<100	<5	<5	<5	<5			6.5	<5	<5	<5
MW-205	UG/L	10/6/2005	850	55	<1	<1	<1	<1	<1	<10	<10	<1	<1	<1		<1	4.2	<1	<0.5	<0.5
MW-205	UG/L	2/15/2006	411	35	<5	<5	<5	<5	<1	<10	<5	<5	<5	<5		<5	19	<5	<5	<5
MW-205	UG/L	8/2/2006	560	40	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	35	<2	<2	<5
MW-205	UG/L	11/8/2006	360	7	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	48	<2	<2	<5
MW-205	UG/L	2/7/2007	150	24	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	32	<2	<2	<5
MW-205	UG/L	5/9/2007	190	7.4	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		0.85	40	<2	0.54	0.41
MW-205	UG/L	8/8/2007	290	6	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	29	<2	1.2	0.65
MW-205	UG/L	11/6/2007	330	12	<0.36	<0.25	<0.6	<0.3	<0.32	12	<0.41	<0.23	<0.26	<0.32		0.7	23	<0.27	1.8	1.5
MW-205	UG/L	2/5/2008	260	4.9	<2	<2	<2	<2	<5	9.2	<5	<2	<2	<2		<2	14	<2	2	1.8
MW-205	UG/L	1/19/2009	<380	150	0.86	2	<4	<4	<10	13	<10	<4	<4	<4		<4	3	<4	<4	<10
MW-205	UG/L	4/22/2009	<320	96	<2	0.38	<2	<2	<5	33	<5	<2	<2	<2		<2	0.6	<2	<2	<5
									<u> </u>											↓
MW-206	UG/L	6/1/1988		5800	2400	2100														\vdash
MW-206	UG/L	9/1/1988		4200	1000	2000														
MW-206	UG/L	12/1/1988		4300	920	2100														
MW-206	UG/L	3/1/1989		2700	3200	2400														
MW-206	UG/L	6/1/1989		3100	1200	2300														
MW-206	UG/L	9/1/1989		4500	620	2400														
MW-206	UG/L	12/1/1989		3200	1000	2000														
MW-206	UG/L	3/1/1990		3700	1700	2600														
MW-206	UG/L	6/1/1990		3700	960	2000														
MW-206	UG/L	9/1/1990		5100	2100	2300														
MW-206	UG/L	12/1/1990		7100	2100	2400														
MW-206	UG/L	3/1/1991		4900	2600	2200														

Lasation	l lucia	Data	TDU -		т.	F	/ V	- V	MATRE	TDA	NAD	4 2 4 TMAD	4.2.F. TN4D	DCE	TCF	+4 2 DCE	-1.2 DCF	1.1.005	1.1.004	1.2.004	VC
Location	Unit	Date (1/1/001	TPH-g	F220	1000	2400	m/p-X	o-X	MTBE	TBA	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
MW-206	UG/L	6/1/1991		5220	1080	2400															
MW-206	UG/L	9/1/1991		4500	2100	2000															
MW-206	UG/L	12/1/1991		3400	720	2500															
MW-206	UG/L	3/1/1992		2000	470	2500															
MW-206	UG/L	6/1/1992		3200	420	2100															
MW-206	UG/L	9/1/1992		9900	1400	3200															
MW-206	UG/L	12/1/1992		13000	2000	6000															
MW-206	UG/L	12/1/1994		8400	4900	1800															
MW-206	UG/L	3/1/1995		9000	720	2000															
MW-206	UG/L	9/1/1995		6200	800	1600															
MW-206	UG/L	12/13/1995	12000	110	16	32															
MW-206	UG/L	7/31/1996	33000	570	110	420			510					<0.3		<0.3	20		8.8	5.8	<0.3
MW-206	UG/L	12/18/1996	8200	2200	<100	1200			<20		130	190	140	<100		<100	<100		<100	<100	<200
MW-206	UG/L	1/21/1998	13000	1500	290	1600			<5		59	35	12	<5		<5	130		<5	<5	<10
MW-206	UG/L	8/20/1998	NS	NS	NS	NS			NS		NS	NS	NS	NS		NS	NS		NS	NS	NS
MW-501	UG/L	3/1/1995		4200	230	1000															
MW-501	UG/L	9/1/1995		2400	270	<200															
MW-501	UG/L	12/13/1995	69000	1600	100	880											8.5		1.6	3.2	
MW-501	UG/L	7/31/1996	18000	1700	73	220			180					<0.3		<0.3	7.2		0.81	1.3	<0.3
MW-501	UG/L	12/18/1996	6800	1200	<50	510			<10		<50	310	130	<50		<50	<50		<50	<50	<100
MW-501	UG/L	1/21/1998	950	260	<5	11			<5		<10	9.3	<5	<5		<5	<5		<5	<5	<10
MW-501	UG/L	8/20/1998	NS	NS	NS	NS			NS		NS	NS NS	NS	NS		NS	NS		NS	NS	NS
MW-501	UG/L	1/26/1999	NS	NS	NS	NS			NS		NS	NS	NS	NS		NS	NS		NS	NS	NS
10100 301	00/1	1/20/1333	143	143	113	113			113		113	113	143	113		113	113		113	143	143
MW-501A	UG/L	8/3/2006	24000	6300	32	170	50	6.1	700	84	32	6.2	25	<2		<2	<2		<2	<2	<5
MW-501A	UG/L	11/10/2006	13000	3300	<40	100	<40	<40	1100	<1000	<100	<40	<40	<40		<40	<40		<40	<40	<100
MW-501A	UG/L	2/12/2007	<13000	3800	<40	130	<40	<40	1100	<1000	<100	<40	44	<40		<40	<40		<40	<40	<100
MW-501A	UG/L	5/11/2007	9100	2000	<100	84	<100	<100	640	<2500	<250	<100	24	<100		<100	<100		<100	<100	<250
MW-501A	UG/L	8/10/2007	7100	1100	15	49	28	3.1	630	54	<50	3.6	27	<20		<20	<20		<20	<20	<50
MW-501A	UG/L	11/8/2007	7700	1400	11	13	13	<6	410	<98	<8.2	<4.6	17	<6.4		<5.4	<6.4		<5.4	<5.6	
IVIVV-JOIA	00/1	11/6/2007	7700	1400	11	13	15	νο	410	\30	₹0.2	\4.0	17	\0.4		\5.4	\0.4		\ 3.4	٧٥.٥	
MW-502	UG/L	6/1/1988		950	79	62															
MW-502	UG/L	9/1/1988		1300	180	2800															
MW-502	UG/L	12/1/1988		6500	860	1500															
MW-502	UG/L	3/1/1989		5300	1200	1900															
MW-502	UG/L	9/1/1994		9800	860	1900															
MW-502	UG/L	12/1/1994		8400	1600	1600															
MW-502	UG/L	3/1/1995		18000	480	2100															
MW-502	UG/L	9/1/1995		15000	690	3300															
MW-502	UG/L	12/13/1995	220000	6900	950	3300											6.9		0.89	6.1	
MW-502	UG/L	7/13/1996	110000	13000	400	1800			1000					<0.3		<0.3	6.8		<0.3	12	<0.3
MW-502	UG/L	12/18/1996	30000	11000	<500	2100			<10		<500	<500	<500	<500		<500	<500		<500	<500	<1000
MW-502	UG/L	1/22/1998	24000	7800	130	1300			70000		320	300	70	<25		<25	<25		<25	<25	<50
MW-502	UG/L	8/19/1998	86000	12000	100	1400			290000		280	340	60	<5		<5	10		<5	<5	<10
MW-502	UG/L	1/26/1999	120000	8800	80.4	1030			119000		255	179	47.1	<5		<5	10.4		<5	<5	<10
MW-502	UG/L	7/19/1999	48000	11000	<5000	<5000			92000		<50000	<5000	<5000	<5000		<5000	<5000		<5000	<2500	<2500
MW-502	UG/L	1/13/2000	25000	8100	<1000	<1000			8700		<10000	<1000	<1000	<1000		<1000	<1000		<1000	<500	<500
MW-502	UG/L	8/2/2000	23000	6300	100	250			4500		160	<1000	<1000	<1000		<1000	<1000		<1000	<50	<50
IVIVV-JUZ	JU/L	0/2/2000	23000	0300	100	250			1 000		100	/100	/100	/TOO		/100	/100		/TOO	7	\J U

Location	Unit	Date	TPH-g	В	T	E	m/p-X	o-X	MTBE	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE 1,1-DCE	1,1-DCA	1,2-DCA	VC
MW-502	UG/L	2/7/2001	18000	5000	82	230	71	-	6500		<500	<50	<50	<50		<50	<50	<50	<50	<25
MW-502	UG/L	7/25/2001	24000	6500	170	400			18000		<500	89	<50	<50		<50	<50	<50	<50	<25
MW-502	UG/L	5/9/2002	25000	4300	<200	390			14000	<2000000	<2000	<200	<200	<200		<200	<200	<200	<100	<100
MW-502	UG/L	9/26/2002	11000	4000	<100	540			9400	<1000000	<1000	100	<100	<100		<100	<100	<100	<50	<50
MW-502	UG/L	10/5/2005	15000	900	<100	430	110	<100	15000	<1000	<1000	<100	110	<100		<100	<100	<100	<50	<50
MW-502	UG/L	2/14/2006	47600	1280	32	616	182	<50	29300	<100	183	86	139	<50		<50	<50	<50	<50	<50
MW-502	UG/L	8/4/2006	20000	2500	38	160	730	<50	29000	790	130	160	98	<2		<2	<2	<2	<2	<5
MW-502	UG/L	11/10/2006	35000	1800	51	820	250	<40	19000	<1000	290	110	240	<40		<40	<40	<40	<40	<100
MW-502	UG/L	2/9/2007	15000	2200	<400	500	560	<400	23000	<10000	<1000	<400	<400	<400		<400	<400	<400	<400	<1000
MW-502	UG/L	5/11/2007	25000	4000	59	500	720	<200	29000	<5000	170	400	250	<200		<200	<200	<200	<200	<500
MW-502	UG/L	8/10/2007	<30000	3300	50	420	480	<100	34000	610	92	200	200	<100		<100	<100	<100	<100	<250
MW-502	UG/L	11/8/2007	19000	2100	<72	530	140	<60	16000	<980	230	50	100	<64		<54	<64	<54	<56	<60
MW-502	UG/L	2/11/2008	26000	3900	52	430	120	<200	27000	<5000	270	30	98	<200		<200	<200	<200	<200	<500
	0 0/ -	2, 11, 1000							27000	13000			33			1200	1200	1200		1300
MW-503	UG/L	6/1/1988		600	140	340														
MW-503	UG/L	9/1/1988		800	280	300														
MW-503	UG/L	12/1/1988		1500	570	380														
MW-503	UG/L	3/1/1989		400	190	360														
MW-503	UG/L	6/1/1989		600	340	630														
MW-503	UG/L	9/1/1989		990	550	200														
MW-503	UG/L	12/1/1989		270	180	180														
MW-503	UG/L	3/1/1990		310	140	140														
MW-503	UG/L	6/1/1990		34	24	110														
MW-503	UG/L	9/1/1990		170	110	140														
MW-503	UG/L	12/1/1990		2100	1300	100														
MW-503	UG/L	3/1/1991		900	650	250														
MW-503	UG/L	6/1/1991		1040	700	330														
MW-503	UG/L	12/1/1992		3300	750	340														
MW-503	UG/L	3/1/1993		2900	400	<250														
MW-503	UG/L	12/1/1994		240	22	66														
MW-503	UG/L	3/1/1995		390	55	100														
MW-503	UG/L	9/1/1995		530	93	130														
MW-503	UG/L	12/13/1995	8200	340	79	190										1.2	38	15	6.5	1.4
MW-503	-	7/31/1996	5100	150	49	25			<10					90		<0.3	36	15	3.1	<0.3
MW-503	UG/L	12/18/1996	4600	210	19	140			<20		28	63	23	14		<10	40	<10	<10	<20
MW-503	UG/L	1/21/1998	3100	210	31	280			<5		17	5.8	14	<5		27	67	9.6	<5	<10
MW-503	UG/L	8/19/1998	960	72	7.9	53					5.3	5	<5	<5		71	41	<5	<5	<10
MW-503B	UG/L	2/9/1999	10000	970	<50	420					<50	<50	<50	<50		150	110	<50	<50	<100
MW-503B	UG/L	7/19/1999	7800	630	<20	540			<20		<200	<20	<20	<20		250	180	<20	<10	<10
MW-503B	UG/L	1/14/2000	14000	1000	32	870			<20		<200	<20	<20	<20		200	210	<20	<10	<10
MW-503B	UG/L	8/4/2000	5600	610	19	500			<10		23	<10	<10	<10		160	140	<10	<5	<5
MW-503B	UG/L	2/6/2001	5800	250	<20	320			<20		<200	<20	<20	<20		150	84	<20	<10	<10
MW-503B	UG/L	7/25/2001	5700	280	<50	230			<50		<500	<50	<50	<50		57	<50	<50	<25	<25
MW-503B	UG/L	5/9/2002	4500	81	3.5	77			<2	<20000	26	2.5	2.2	<2		23	23	<2	<1	7.7
MW-503B	UG/L	9/26/2002	3300	36	9.6	140			<1	<10000	48	2.5	3.7	<1		16	18	<1	<0.5	10
MW-503B	UG/L	7/1/2004	5900	160	37	89	42	<0.5	<5	<100	42	3J	4J	<5			3J	<5	<5	<5
MW-503B	UG/L	10/5/2005	5400	1100	<20	73	38	<20	<20	<200	<200	<20	<20	<20		<20	<20	<20	<10	<10
MW-503B	UG/L	2/14/2006	5450	331	<50	12	<250	<250	<10	<100	<50	<50	<50	<50		<50	<50	<50	<50	<50

Table III
Summary of Total Petroleum Hydrocarbon (TPH) and VOC Results
Former CENCO Refinery
Santa Fe Springs, CA

Location	Unit	Date	TPH-g	В	т	Е	m/p-X	o-X	MTBE	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
MW-503B	UG/L	8/4/2006	4700	31	<2	3.5	2.1	2	7.6	<50	<5	<2	<2	<2	ICL	3.1	7.2	1,1-DCL	<2	1,2-DCA <2	5.8
MW-503B	UG/L	11/10/2006	3500	26	<4	4.7	<4	<4	<10	<100	<10	<4	<4	<4		<4	4.9		<4	<4	<10
MW-503B	UG/L	2/9/2007	1600	59	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		2.2	11		<2	<2	5.4
MW-503B	UG/L	5/11/2007	1800	60	0.58	2.1	1	<2	1.3	<50	1.5	<2	0.61	<2		2.6	17		0.63	0.47	7.4
MW-503B	UG/L	8/10/2007	1800	80	0.62	1.7	1.1	<2	<5	<50	<5	0.23	0.44	<2		2.0	19		0.03	0.47	7.4
MW-503B	UG/L	11/8/2007	2400	270	3.6	3.7	4.7	<1.2	2.8	<20	11	<0.92	t	<1.3		<1.1	15		<1.1	<1.1	7.0
		2/11/2008	2700	220	3.1	3.4	3.5	<8	3.4	<200	18	<8	<1 <8	<8 <8		1.4	21		<8		6.3
MW-503B	UG/L	1/21/2009	6200					<10		<250			†	<10		1	<10		<10	<8 <10	
MW-503B	UG/L	4/27/2009	4000	410 210	14 11	39 24	28 18	2.9	<25 2.2	<50	36 29	<10	<10 2.9	<2		<10 <2	4.8		<2	<10 1.2	25 25
MW-503B	UG/L					-	10					0.53	 			1					
MW-503B	UG/L	3/8/2010	2800	40	1.4	1.7		<0.50	2.9	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	6.7
MW-503B MW-503B	UG/L UG/L	5/17/2010	2900 3700	91 270	1.0	1.2		<0.50 0.65	5.1	<10 <10	1.4	<1.0 <1.0	<1.0	<1.0 <1.0		<1.0 <1.0	<1.0 <1.0		<1.0 <1.0	1.6	5.7 5.4
		8/9/2010 11/8/2010			5.3	2.4	F90	170	<1.0		3.4	}	1.3		-1.0			-1.0		3.8	
MW-503B	UG/L		8000	690 940	320 440	180	580 800	230	8.2	<10	97	370	140 170	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	5.9 6.1
MW-503B	UG/L	11/8/2010 2/4/2011	12000 57000		_	250 2900		5900	9.6	<10	250	450 15000	_	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.7	
MW-503B	UG/L			1400	7700		15000		<1.0	<10	5200		4400	<1.0	<1.0	<1.0	2.7	<1.0	<1.0	4.8	<1.0
MW-503B	UG/L	4/15/2011	41000	3400	3200	1800	7200	2600	9.1	63	370	2100	640	<1.0	<1.0	<1.0	1.4	<1.0	<1.0	<0.50	8.0
MW-503B	UG/L	4/15/2011	39000	2200	2500	1400	5200	2000	9.0	64	260	1800	620	<1.0	<1.0	<1.0	1.5	<1.0	<1.0	<0.50	6.9
MW-503B	UG/L	8/29/2011 11/16/2011	13000	590	270	440	1300	670	4.4	<10	200	470	150	<1.0	<1.0	<1.0	2.7	<1.0	<1.0	<0.50	1.1
MW-503B	UG/L		6700 5400	170	160	220	550	280	<1.0	<10	170	290	96	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-503B	UG/L	1/31/2012		250	120	270	580	290	<1.0	<10	150	300	57	<1.0	<1.0	<1.0	3.3	<1.0	<1.0	2.0	<1.0
MW-503B	UG/L	1/31/2012	5200	280	120	300	650	330	<1.0	<10	170	340	55	<1.0	<1.0	<1.0	3.5	<1.0	<1.0	2.1	<1.0
MW-504	UG/L	12/1/1993		11000	1300	1800															
												<u> </u>	+								
MW-504	UG/L	6/1/1994		8600	2100	<500						<u> </u>	+								
MW-504	UG/L UG/L	12/1/1994 3/1/1995		5800 5200	700 1100	840 1200															
MW-504	UG/L	9/1/1995		8000	1300	2200							+								
MW-504	UG/L	12/13/1995	99000	2700	730	800							+				14		13		
MW-504	UG/L	8/1/1996	80000	3400	1400	960			370			<u> </u>	+			0.46	20		4	20	1.1
MW-504		12/18/1996	33000	6000	2800	1000			<50		2300	5000	2100	<1 <250		<250	<250		<250	<250	1.1 <500
	UG/L								+			}	† †								
MW-504 MW-504	UG/L UG/L	1/21/1998 8/20/1998	30000	4600	940	750 NS			<250 NS		360	800	340	<250 NS		<250 NS	<250		<250 NS	<250	<500
MW-504	UG/L	1/28/1999	NS NS	NS NS	NS NS	NS NS			NS NS		NS NS	NS NS	NS NS	NS		NS NS	NS NS		NS NS	NS NS	NS NS
	-												 			1					
MW-504	UG/L UG/L	7/19/1999 1/10/2000	NS NS	NS NS	NS NS	NS NS			NS NS		NS NS	NS NS	NS NS	NS NS		NS NS	NS NS		NS NS	NS NS	NS NS
MW-504	UG/L	7/31/2000	NS NS	NS NS	NS NS	NS NS			NS NS		NS NS	NS NS	NS NS	NS NS		NS NS	NS NS		NS NS	NS NS	NS NS
MW-504	UG/L	2/6/2001	NS	NS NS		NS NS			NS NS			NS	NS NS	NS		NS NS	NS NS		NS NS	NS NS	
MW-504	UG/L	7/24/2001			NS NS	NS NS			NS NS		NS NS	NS	 			NS NS				NS NS	NS NS
MW-504	UG/L	5/6/2002	NS NS	NS NS	NS NS	NS NS			NS NS	NS		NS NS	NS NS	NS NS		NS NS	NS NS		NS NS		NS NS
MW-504	UG/L	9/23/2002	NS NS	NS NS	NS NS	NS NS			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS		NS NS	NS NS			NS NS	NS NS
MW-504		2/16/2006	18000	NS 67E	76	262	391	120				152	NS 106	<50		<50	NS <=0		NS <50	NS <50	NS <50
	UG/L		10000	675 1500		150	360	130	13 9.3	<100 <50	82 54	98	90	<50 <2		<50 <2	<50 2		<50 <2	3.9	<50 <5
MW-504 MW-504	UG/L	8/3/2006 11/10/2006	6200	1000	51 <40	130	220	<40	<100	<1000	<100	49	t	<40		<40	<40		<2 <40	<40	<100
	UG/L												98								
MW-504	UG/L	2/9/2007	6100	140	<2	13	120	8.5	<5 <100	98	49	38	64	<2		<2	<2		<2	<2	<5 <100
MW-504	UG/L	5/11/2007	13000	1500	7.2	230	390	11	<100	<1000	80	130	110	<40		<40 <20	<40		<40 <20	<40 <20	<100
MW-504	UG/L	8/10/2007	7100 4700	1200	6.6 7.5	130 120	340	6.8 7	5.1	<500	54	95 95	89	<20 <3.2		<20 <2.7	<20 <3.2		<20	<20 <2.8	<50
	UG/L	11/8/2007		960			260	-	4.9	<49 110	27	85	100						<2.7		<3
MW-504	UG/L	2/8/2008	6200	760	7.5	110	230	16	6.4	110	84	89	110	<20		<20	<20		<20	3.9	<50
												1									1

Location	Unit	Date	TPH-g	В	Т	Е	m/p-X	o-X	MTBE	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
MW-600	UG/L	8/1/1990	380000			_	,			7277		- , -, · · · · · · · · · · · · · · · · · · ·		7 02		32,2 2 32		-,	-,,-		
MW-600	UG/L	2/20/1991	50.2	18000	9200	1300															
MW-600	UG/L	12/13/1995	3500000	23000	40000	18000															
MW-600	UG/L	8/1/1996	210000	14000	15000	3500			<10					<1		<1	3.8		0.36	5.5	<1
MW-600	UG/L	12/19/1996	87000	14000	15000	1800			<10		<500	1800	580	<500		<500	<500		<500	<500	<1000
MW-600	UG/L	1/22/1998	NS	NS	NS	NS			NS		NS	NS	NS	NS		NS	NS		NS	NS	NS
MW-600	UG/L	8/20/1998	NS	NS	NS	NS			NS		NS	NS	NS	NS		NS	NS		NS	NS	NS
MW-600	UG/L	1/28/1999	NS	NS	NS	NS			NS		NS	NS	NS	NS		NS	NS		NS	NS	NS
MW-600A	UG/L	7/19/1999	NS	NS	NS	NS			NS		NS	NS	NS	NS		NS	NS		NS	NS	NS
MW-600A	UG/L	1/10/2000	NS	NS	NS	NS			NS		NS	NS	NS	NS		NS	NS		NS	NS	NS
MW-600A	UG/L	7/31/2000	NS	NS	NS	NS			NS		NS	NS	NS	NS		NS	NS		NS	NS	NS
MW-600A	UG/L	2/6/2001	NS	NS	NS	NS			NS		NS	NS	NS	NS		NS	NS		NS	NS	NS
MW-600A	UG/L	7/24/2001	NS NS	NS	NS NS	NS NS			NS NS	NC	NS	NS NS	NS NS	NS NS		NS NS	NS		NS NC	NS NS	NS
MW-600A MW-600A	UG/L UG/L	5/6/2002 9/23/2002	NS NS	NS NS	NS NS	NS NS			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS		NS NS	NS NS		NS NS	NS NS	NS NS
10100-000A	UG/L	9/23/2002	INO	INS	INS	INS			INS	INS	INS	INS	INS	INS		IVO	INS		INS	INS	103
MW-601	UG/L	8/1/1990	360000																		
MW-601	UG/L	2/20/1991	24	12000	4900	1900															
MW-601	UG/L	12/13/1995	3500000	18000	17000	130000															
MW-601	UG/L	8/1/1996	250000	12000	1400	4600			<10					<1		<1	4.4		1.4	2.9	1.9
MW-601	UG/L	12/19/1996	70000	10000	<500	1600			<10		<500	1100	<500	<500		<500	<500		<500	<500	<1000
MW-601	UG/L	1/22/1998	NS	NS	NS	NS			NS		NS	NS	NS	NS		NS	NS		NS	NS	NS
MW-601	UG/L	8/20/1998	NS	NS	NS	NS			NS		NS	NS	NS	NS		NS	NS		NS	NS	NS
MW-601	UG/L	1/28/1999	NS	NS	NS	NS			NS		NS	NS	NS	NS		NS	NS		NS	NS	NS
MW-601A	UG/L	7/19/1999	42000	18000	<5000	<5000			11000		<50000	<5000	<5000	<5000		<5000	<5000		<5000	<2500	<25000
MW-601A	UG/L	1/13/2000	48000	22000	<1000	<1000			22000		<10000	<1000	<1000	<1000		<1000	<1000		<500	<1000	<500
MW-601A	UG/L	8/3/2000	34000	21000	<200	<200			5600		69	<200	<200	<200		<200	<200		<200	<100	<100
MW-601A	UG/L	2/7/2001	35000	16000	63	97			1200		<500	<50	<50	<50		<50	<50		<50	<25	<25
MW-601A	UG/L	7/24/2001	31000	15000	<100	110			2800	NC	<100	<100	<100	<100		<100	<100		<100	<50	<50
MW-601A MW-601A	UG/L UG/L	5/9/2002 9/26/2002	28000 11000	12000 8000	<100 <100	<100 590			3500 4000	NS NS	<1000 <1000	<100 <100	<100 <100	<100 <100		<100 <100	<100 <100		<100 <100	<50 <50	<50 <50
WW-001A	UU/L	3/20/2002	11000	8000	\100	390			4000	INS	\1000	\100	\100	\100		\100	\100		\100	\30	\30
MW-603	UG/L	12/1/1995	<500	0.98	1.4	0.62															
MW-603	UG/L	7/30/1996	<100	0.6	<0.5	1.4			2					53		<0.3	6.4		3.9	9.5	0.45
MW-603	UG/L	12/16/1996	<100	<5	<5	<5			<2		<5	<5	<5	37		<5	<5		<5	<5	<10
MW-603	UG/L	1/22/1998	<100	<5	<5	<5			<5		<10	<5	<5	59		<5	9		5	<5	<10
MW-603	UG/L	8/19/1998	<100	<5	<5	<5					<10	<5	<5	13		<5	<5		<5	29	<10
MW-603	UG/L	1/27/1999	<100	<5	<5	<5			<5		<10	<5	<5	25		<5	5.3		<5	39	<10
MW-603	UG/L	7/19/1999	<500	<0.5	<1	<1			<1		<10	<1	<1	37		<1	7.4		3	40	<0.5
MW-603	UG/L	1/11/2000	<500	<0.5	<1	<1			<1		<1	<1	<1	56		<1	6.4		3.6	16	<0.5
MW-603	UG/L	7/31/2000	<500	<0.5	<1	<1			<1		<1	<1	<1	95		<1	9.3		6.7	7.2	0.71
MW-603	UG/L	2/7/2001	<500	<0.5	<1	<1			<1		<1	<1	<1	89		2.8	11		8.5	2.7	0.96
MW-603	UG/L	7/24/2001	190	<0.5	<1	<1			<1		<1	<1	<1	110		8.3	15		10	2.9	<0.5
MW-603	UG/L	5/7/2002	210	<1	<2	<2			<2	<20000	<20	<2	<2	170		3.4	9.6		7	<1	<1
MW-603	UG/L	9/24/2002	<100	<1	<2	<2	2.5	2.5	<2	<20000	<20	<2	<2	210		5.3	14		11	3.2	1.6
MW-603	UG/L	7/1/2004	<200	<5 0.83	0.3J	<0.5	<0.5	<0.5	<5	<100	2J	<5	<5	120		3J	12		5.7	3J	<5 1.6
MW-603	UG/L	10/6/2005	150	0.82	<1	<1	<1	<1	<1	<10	<10	<1	<1	160		7.3	22		8	12	1.6

Table III
Summary of Total Petroleum Hydrocarbon (TPH) and VOC Results
Former CENCO Refinery
Santa Fe Springs, CA

Location	Unit	Date	TPH-g	В	т	Е	m/p-X	o-X	MTBE	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE 1,1-l	OCE 1,1-DCA	1,2-DCA	VC
MW-603	UG/L	2/14/2006	245	<1	< 5	< 5	111/ p-x <5	X <5	1.7	18	<5	1,2,4-11016	1,3,3-11016	103	ICE	3.5	17	6	28	< 5
MW-603	UG/L	8/1/2006	190	<2	<2	<2	<2	<2	<5	<50	<u> </u>	<2	<2	150		3.7	22	7.1	8	<5
MW-603	UG/L	11/7/2006	150	<2	<2	<2	<2	<2	<5	<50	<u> </u>	<2	<2	170		3.3	21	6.3	14	<5
MW-603	UG/L	2/6/2007	120	<2	<2		<2		<5	<50	<u> </u>	<2	 	140		2.7		6	17	<5
MW-603	UG/L	8/7/2007	<110	0.28	<2	<2 <2		<2 <2	<5 <5	<50 <50	<5	<2	<2 <2	140		2.7	19 17	5.5		0.79
MW-603	UG/L	11/5/2007	120		<0.36	<0.25	<2 <0.6		<0.32	<4.9	<0.41	<0.23	 	120		2.6	16	5.5	6.4	1.2
		1		0.31				<0.3					<0.26					3.9	3.8	
MW-603	UG/L	2/4/2008	120	<2	<2	<2	<2	<2	<5	<1	<5	<2	<2	110		2.5	15		2.2	<5 <5
MW-603	UG/L	1/13/2009	75	<2	<2	<2	<2	<2	<5 45	<50	<5	<2	<2	74		2.8	17	4.4	5.6	<5
MW-603	UG/L	4/21/2009	59	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	90		2.4	17	3.8	2	0.99
NAVA (CO 4	110/1	12/20/1005	1000	160	2.2	7.0														1
MW-604	UG/L	12/20/1995	1900	160	3.3	7.8			12.4					-0.2		40.2	0.00	17	1.1	10.2
MW-604	UG/L	7/30/1996	900	73	7.8	<0.5			12.4		-2	-2	.2	<0.3		<0.3	0.98	1.7	1.1	<0.3
MW-604	UG/L	12/17/1996	710	47	<2	<2			<2		<2	<2	<2	<2		<2	<2	<2	<2	<4
MW-604	UG/L	1/22/1998	410	7	<5 .rs	<5 .rs			<5		<10	<5 .5	<5 -5	<5		<5 .f	<5	<5	<5 .5	<10
MW-604	UG/L	8/19/1998	370	<5 25	<5 -r	<5 45			4 F		<10	<5 45	<5	<5		<5 -r	<5	<5	<5 	<10
MW-604	UG/L	1/27/1999	230	25	<5	<5			<5		<10	<5	<5	<5		<5	<5	<5	<5	<10
MW-604	UG/L	7/19/1999	500	14	<1	<1			<1		<10	<1	<1	<1		<1	4.2	<1	<0.5	<0.5
MW-604	UG/L	1/11/2000	750	21	<1	<1			<1		<10	<1	<1	<1		<1	3.9	<1	0.99	<0.5
MW-604	UG/L	8/3/2000	560	100	<1	<1			30		<10	<1	<1	<1		<1	8.7	<1	<0.5	
MW-604	UG/L	2/7/2001	1100	110	<5	<5			31		<50	<5	<5	<5		<5	<5	<5	<2.5	6.8
MW-604	UG/L	7/24/2001	1100	67	<1	<1			34	NG	<10	<1	<1	<1		<1	<5	<1	<5	<0.5
MW-604	UG/L	5/8/2002	1400	57	<1	<1			48	NS	<10	<1	<1	<1		<1	<1	<1	<5	5.3
MW-604	UG/L	9/25/2002	970	36	<1	<1			84	NS	<10	<1	1.3	<1		<1	<1	<1	<5	4.8
MW-604	UG/L	11/8/2006	330	7.2	<2	<2	<2	<2	15	65	<5 -	<2	<2	<2		<2	<2	<2	<2	<5
MW-604	UG/L	2/7/2007	540	9.8	<2	<2	<2	<2	20	60	<5 -	<2	<2	<2		<2	<2	<2	<2	<5
MW-604	UG/L	5/8/2007	480	4.4	0.38	<2	0.81	0.48	18	57	<5 -	0.48	0.26	<2		<2	<2	<2	<2	0.87
MW-604	UG/L	8/7/2007	290	1.3	<2	<2	0.74	0.46	18	44	<5	0.23	<2	<2		<2	<2	<2	<2	<5
MW-604	UG/L	11/5/2007	500	1.2	0.36	<0.25	0.85	0.49	23	50	0.55	0.41	<0.26	<0.32		<0.27	<0.32	<0.27	<0.28	0.69
NAV 605	110/1	42/20/4005	.1000	10	.0.5	.0.5														
MW-605	UG/L	12/20/1995	<1000	10	<0.5	<0.5														
MW-605	UG/L	7/31/1996	<100	<0.5	<0.5	<0.5			<20					13		<0.3	<0.3	1.2	<0.3	<0.3
MW-605	UG/L	12/16/1996	<100	<1	<1	<1			<2		<1	<1	<1	11		<1	<1	<1	<1	<2
MW-605	UG/L	1/22/1998	<100	<5 -	<5 -	< 5			<5		<10	<5 -	<5 -	14		<5 -	<5	<5	<5	<10
MW-605	UG/L	8/19/1998	<100	<5 -	<5 -	<5 -					<10	<5 -	<5 -	<5 -		<5 -	<5	<5	<5	<10
MW-605	UG/L	1/28/1999	<100	<5	<5	<5			<5		<10	<5	<5	<5		<5	<5	<5	<5	<10
MW-605	UG/L	7/19/1999	<500	<0.5	<1	<1			<1		<10	<1	<1	1.6		3.2	<1	<1	<0.5	<0.5
MW-605	UG/L	1/11/2000	<600	<0.5	<1	<1			<1		<10	<1	<1	7		<1	<1	1	<0.5	<0.5
MW-605	UG/L	8/2/2000	<700	<0.5	<1	<1			<1		<10	<1	<1	22		<1	<1	1.6	<0.5	<10
MW-605	UG/L	2/7/2001	<800	<0.5	<1	<1			<1		<10	<1	<1	7.1		<1	<1	<1	<0.5	<0.5
MW-605	UG/L	7/24/2001	<100	<0.5	<1	<1			<1		<10	<1	<1	26		<1	<1	<1	<0.5	<0.5
MW-605	UG/L	5/7/2002	<200	<0.5	<1	<1			<1	<10000	<10	<1	<1	19		<1	<1	<1	<0.5	<0.5
MW-605	UG/L	9/24/2002	<300	<0.5	<1	<1		6 -	<1	<10000	<10	<1	<1	13		<1	<1	<1	<0.5	<0.5
MW-605	UG/L	6/30/2004	<200	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<100	<5	<5	<5	5J		<5	<5	<5	<5	<5
MW-605	UG/L	10/5/2005	<100	<0.5	<1	<1	<1	<1	<1	<10	<10	<1	<1	4.3		<1	<1	<1	<0.5	<0.5
MW-605	UG/L	10/5/2005	<100	<0.5	<1	<1	<1	<1	<1	<10	<10	<1	<1	4.5		<1	<1	<1	<0.5	<0.5
MW-605	UG/L	2/14/2006	<50	<1	< 5	< 5	< 5	< 5	<1	<10	<5 -	< 5	<5 -	4.2		< 5	<5	<5	<5	<5 -
MW-605	UG/L	2/14/2006	53	<1	<5	<5	<5	<5	<1	<10	<5	<5	<5	5.3		<5	<5	<5	<5	<5
MW-605	UG/L	8/1/2006	<50	<2	<2	<2	<2	<2	< 5	<50	<5	<2	<2	8.5		<2	<2	<2	<2	<5
MW-605	UG/L	8/1/2006	<50	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	9.2		<2	<2	<2	<2	<5

Location	Unit	Date	TPH-g	В	Т	Е	m/p-X	o-X	MTBE	TBA	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
MW-605	UG/L	11/7/2006	<50	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	20		<2	<2		<2	<2	<5
MW-605	UG/L	11/7/2006	<50	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	21		<2	<2		<2	<2	<5
MW-605	UG/L	2/6/2007	<50	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	35		<2	<2		<2	<2	<5
MW-605	UG/L	5/8/2007	38	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	45		<2	1.6		0.74	<2	<5
MW-605	UG/L	5/8/2007	35	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	40		<2	1.6		0.68	<2	<5
MW-605	UG/L	8/7/2007	30	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	37		<2	1.2		0.77	<2	<5
MW-605	UG/L	11/5/2007	<30	<0.28	< 0.36	<0.25	<0.6	<0.3	<0.32	<4.9	<0.41	<0.23	<0.26	20		<0.27	0.84		0.53	<0.28	<0.3
MW-605	UG/L	2/4/2008	<50	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	20		<2	1.1		0.62	<2	<5
MW-605	UG/L	2/4/2008	<50	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	21		<2	1.1		0.67	<2	<5
MW-606	UG/L	12/19/1995	<500	<0.5	<0.5	<0.5															
MW-606	UG/L	7/31/1996	<100	<0.5	<0.5	<0.5			<20					<0.3		<0.3	<0.3		<0.3	0.96	<0.3
MW-606	UG/L	12/16/1996	<100	<1	<1	<1			<2		<1	<1	<1	<1		<1	<1		<1	<1	<2
MW-606	UG/L	1/22/1998	<100	<5	<5	<5			<5		<10	<5	<5	<5		<5	<5		<5	<5	<10
MW-606	UG/L	8/19/1998	170	<5	<5	<5					<10	<5	<5	<5		<5	<5		<5	<5	<10
MW-606	UG/L	1/28/1999	<100	<5	<5	<5			<5		<10	<5	<5	<5		<5	<5		<5	<5	<10
MW-606	UG/L	7/19/1999	<500	<0.5	<1	<1			<1		<10	<1	<1	<1		<1	<1		<1	<0.5	<0.5
MW-606	UG/L	1/11/2000	<500	<0.5	<1	<1			1.2		<10	<1	<1	<1		<1	<1		<1	<0.5	<0.5
MW-606	UG/L	8/2/2000	<500	<0.5	<1	<1					<10	<1	<1	<1		<1	<1		<1	<0.5	<0.5
MW-606	UG/L	2/7/2001	<500	<0.5	<1	<1			<1		<10	<1	<1	<1		<1	<1		<1	<0.5	<0.5
MW-606	UG/L	7/24/2001	<100	<0.5	<1	<1					<10	<1	<1	<1		<1	<1		<1	<0.5	<0.5
MW-606	UG/L	5/7/2002	<100	<0.5	<1	<1			<100	<10000	<10	<1	<1	<1		<1	<1		<1	<0.5	<0.5
MW-606	UG/L	9/24/2002	<100	<0.5	<1	<1			<100	<10000	<10	<1	<1	<1		<1	<1		<1	<0.5	<0.5
MW-606	UG/L	6/30/2004	<200	<0.5	<0.5	<0.5	<0.5	<0.5	3J	<100	<5	<5	<5	<5		<5	<5		<5	<5	<5
MW-606	UG/L	10/5/2005	240	5.6	<1	<1	<1	<1	4.8	42	<10	<1	<1	<1		<1	<1		<1	<0.5	3.2
MW-606	UG/L	2/14/2006	<50	<1	<5	<5	<5	<5	<1	<10	<5	<5 -2	<5 -2	<5 -2		<5 -2	<5 -2		<5	<5 -:2	<5 .f
MW-606	UG/L	8/1/2006	<50	<2	<2	<2	<2	<2	<5 .5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5 .5
MW-606	UG/L	11/7/2006	<50	<2	<2	<2	<2	<2	<5 	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5 -r
MW-606 MW-606	UG/L UG/L	2/6/2007 5/8/2007	<50 <50	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<5 <5	<50 <50	<5 <5	<2 <2	<2 <2	<2 <2		<2 <2	<2 <2		<2 <2	<2 <2	<5 <5
MW-606	•	8/7/2007	<50		<2		<2	<2	0.9	<50 <50	<5 <5	<2		<2		<2				<2	<5 <5
MW-606	UG/L UG/L	11/5/2007	<30	<2 <0.28	<0.36	<2 <0.25	<0.6	<0.3	0.32	<4.9	<0.41	<0.23	<2 <0.26	<0.32		<0.27	<2 <0.32		<2 <0.27	<0.28	<0.3
MW-606	UG/L	2/4/2008	<50	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
MW-606	UG/L	1/13/2009	<50	<2	<2	<2	<2	<2	<5	<50		<2	<2	<2		<2	<2		<2	<2	<5
MW-606	UG/L	4/21/2009	<50	<2	<2	<2	<2	<2	<5	<50		<2	<2	<2		<2	<2		<2	<2	<5
	30,1	., ==, =003	-50		, <u>-</u>	, <u>-</u>	, <u>-</u>	, <u>-</u>	,,,	,50			· <u>-</u>	, <u>-</u>		, <u>-</u>	, <u>-</u>		, <u>-</u>	, <u>-</u>	
MW-607	UG/L	12/19/1995	1200	33	35	1.7															
MW-607	UG/L	7/31/1996	900	19	5	2.8			12					<0.3		<0.3	<0.3		0.68	<0.3	1.1
MW-607	UG/L	12/17/1996	1000	21	<1	<1			<2		2	<1	1.7	<1		<1	<1		<1	<1	<2
MW-607	UG/L	1/22/1998	1200	220	<25	<25			400		<50	<25	<25	<25		<25	<25		<25	220	<50
MW-607	UG/L	8/19/1998	260	17	<5	<5			12		<10	<5	<5	<5		<5	<5		<5	<5	<10
MW-607	UG/L	1/27/1999	1760	220	<5	<5			6.2		<10	<5	<5	<5		<5	<5		<5	<5	<10
MW-607	UG/L	7/19/1999	1200	260	<5	<5			<5		<50	<5	<5	<5		<5	<5		<5	<2.5	<2.5
MW-607	UG/L	1/11/2000	1200	170	<2	<2			4.5		<20	<2	<2	<2		<2	<2		<2	<1	<1
MW-607	UG/L	7/31/2000	540	110	<2	<2			6.2		<10	<2	<2	<2		<2	<2		<2	<1	1.1
MW-607	UG/L	2/7/2001	50	12	<1	<1			<1		<10	<1	<1	<1		<1	1.1		<1	<0.5	0.55
MW-607	UG/L	7/24/2001	590	13	<1	<1			<1		<10	<1	<1	<1		<1	1.4		<1	<0.5	<0.5
MW-607	UG/L	5/7/2002	490	5.4	<1	<1			<1	91000	<10	<1	<3	<1		<1	1.7		<1	<0.5	<0.5
MW-607	UG/L	9/24/2002	110	<0.5	<1	<1			4.2	76000	<10	<1	<3	<1		<1	2		<1	<0.5	<0.5

Table III
Summary of Total Petroleum Hydrocarbon (TPH) and VOC Results
Former CENCO Refinery
Santa Fe Springs, CA

Location	Unit	Date	TPH-g	В	Т	E	m/p-X	o-X	MTBE	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
MW-607	UG/L	6/30/2004	540	10	<0.5	<0.5	1.4	<0.5	4J	50J	<5	<5	3J	<5		<5	<5	,	<5	<5	3J
MW-607	UG/L	10/5/2005	760	1.2	<1	<1	<1	<1	1.7	74	<10	<1	<1	<1		<1	<1		<1	<0.5	1.2
MW-607	UG/L	2/14/2006	373	<1	<5	<5	<5	<5	2.1	57	<5	<5	<5	<5		<5	<5		<5	<5	1
MW-607	UG/L	8/1/2006	350	<2	<2	<2	<2	<2	<5	120	<5	<2	<2	<2		<2	<2		<2	<2	<5
MW-607	UG/L	11/7/2006	210	<2	<2	<2	<2	<2	<5	77	<5	<2	<2	<2		<2	<2		<2	<2	<5
MW-607	UG/L	2/6/2007	590	<2	<2	<2	<2	<2	<5	130	<5	<2	<2	<2		<2	<2		<2	<2	<5
MW-607	UG/L	5/8/2007	330	<2	<2	<2	<2	<2	2.3	110	<5	<2	<2	<2		<2	<2		<2	<2	<5
MW-607	UG/L	8/7/2007	320	0.5	<2	<2	<2	<2	4	120	<5	<2	<2	<2		<2	<2		0.33	0.53	1.2
MW-607	UG/L	11/5/2007	440	0.5	<0.36	<0.25	<0.6	<0.3	3.1	140	<0.41	<0.23	<0.26	<0.32		<0.27	<0.32		0.29	0.38	0.99
MW-607	UG/L	2/4/2008	790	<2	<2	<2	<2	<2	5.6	230	2.8	0.45	<2	<2		<2	<2		0.4	0.53	1.3
MW-701	UG/L	2/4/2011	190	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	4.3	1.6	9.5	1.7	<1.0	<0.50	<1.0
MW-701	UG/L	4/11/2011	230	1.1	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	14	2.3	14	3.8	1.0	<0.50	6.0
MW-701	UG/L	8/30/2011	190	2.5	<0.50	<0.50	<1.0	<0.50	<1.0	19	<1.0	<1.0	<1.0	<1.0	14	2.3	9.0	3.4	<1.0	<0.50	5.2
MW-701	UG/L	8/30/2011	290	2.7	<0.50	<0.50	<1.0	<0.50	<1.0	29	<1.0	<1.0	<1.0	<1.0	11	2.0	7.7	2.8	<1.0	<0.50	4.0
MW-701	UG/L	11/16/2011	310	2.5	0.62	1.4	3.5	1.8	<1.0	<10	7.6	3.4	<1.0	1.3	13	<1.0	9.2	4.6	<1.0	<0.50	<1.0
MW-701	UG/L	2/1/2012	300	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	8.9	3.8	14	4.3	<1.0	<0.50	<1.0
MW-702	110/1	2/4/2011	2200	01	0.74	0.03	-1.0	∠0.F0	-1.0	-10	гэ	-1.0	1 -	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	ZO EO	-1.0
	UG/L	<u> </u>	2300	91	1	0.92	<1.0	<0.50	<1.0	<10	5.2	<1.0	1.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-702 MW-702	UG/L UG/L	4/12/2011 8/30/2011	910 260	6.3 15	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0	32 59	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	2.0 2.9	<1.0 <1.0	1.3 <1.0	<0.50 <0.50	1.1
MW-702	UG/L	11/16/2011	1400	99	0.59	0.51	<1.0	<0.50	<1.0	<10	2.9	<1.0	1.0	<1.0	<1.0	<1.0	2.5	<1.0	1.2	<0.50	1.1 <1.0
MW-702	UG/L	2/9/2012	1400	480	1.3	0.65	<1.0	<0.50	<1.0	<10	3.4	<1.0	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-702	UG/L	2/9/2012	1500	470	1.3	0.03	<1.0	<0.50	<1.0	<10	3.3	<1.0	1.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
10100-702	00/1	2/3/2012	1300	470	1.5	0.71	\1.0	\0.50	\1.0	110	3.3	\1.0	1.5	\1.0	\1.0	\1.0	\1.0	\1.0	\1.0	\0.50	<u> </u>
MW-703	UG/L	2/4/2011	1300	33	1.3	5.2	2.8	<0.50	<1.0	<10	1.6	1.8	<1.0	<1.0	2.0	<1.0	18	3.6	<1.0	<0.50	<1.0
MW-703	UG/L	4/12/2011	1100	76	1.4	7.8	4.8	<0.50	1.4	<10	<1.0	2.7	<1.0	<1.0	2.6	<1.0	10	1.7	<1.0	<0.50	<1.0
MW-703	UG/L	8/30/2011	2100	170	3.4	20	8.5	<0.50	3.3	50	<1.0	2.4	1.1	<1.0	1.1	<1.0	8.7	<1.0	<1.0	<0.50	1.3
MW-703	UG/L	11/17/2011	1400	150	3.4	21	4.7	<0.50	<1.0	<10	<1.0	2.2	1.0	<1.0	<1.0	<1.0	9.2	<1.0	<1.0	<0.50	<1.0
MW-703	UG/L	11/17/2011	1700	170	3.8	25	5.6	<0.50	<1.0	<10	<1.0	2.5	1.2	<1.0	<1.0	<1.0	8.8	<1.0	<1.0	<0.50	<1.0
MW-703	UG/L	2/14/2012	470	48	0.72	1.4	1.9	<0.50	<1.0	<10	1.1	<1.0	<1.0	<1.0	2.6	1.0	28	3.0	<1.0	<0.50	2.5
MW-704	UG/L	2/9/2011	26000	1900	2400	620	3700	720	430	<10	96	1300	550	<1.0	<1.0	<1.0	2.5	<1.0	1.3	40	<1.0
MW-704	UG/L	2/9/2011	27000	1800	2000	610	3600	680	210	<10	120	1200	520	<1.0	2.3	<1.0	2.5	<1.0	1.2	38	<1.0
MW-704	UG/L	4/13/2011	5400	170	110	200	190	68	73	<10	38	<1.0	<1.0	<1.0	<1.0	<1.0	5.6	<1.0	6.0	7.0	2.0
MW-704	UG/L	8/31/2011	11000	570	600	300	540	180	180	160	58	410	170	<1.0	<1.0	<1.0	3.8	<1.0	3.5	25	1.5
MW-704	UG/L	9/1/2011	2200	1200	95	92	1500	170	17	46	87	160	35	<1.0	<1.0	<1.0	6.6	<1.0	<1.0	<0.50	4.6
MW-704	UG/L	11/17/2011	10000	550	430	420	520	180	190	<10	37	490	210	<1.0	<1.0	<1.0	3.4	<1.0	3.9	18	<1.0
MW-704	UG/L	2/14/2012	7700	310	89	390	530	95	100	73	50	500	210	<1.0	<1.0	<1.0	5.3	<1.0	5.7	5.9	3.1
MW-704	UG/L	2/14/2012	7800	320	89	410	560	96	130	80	53	510	220	<1.0	<1.0	<1.0	4.5	<1.0	4.9	6.2	2.3
		 			ļ																<u> </u>
MW-705	UG/L	2/4/2011	3100	450	3.5	5.1	6.4	0.54	90	94	6.7	<1.0	1.3	<1.0	<1.0	<1.0	2.0	<1.0	<1.0	<0.50	<1.0
MW-705	UG/L	4/12/2011	930	55	0.87	1.7	1.6	<0.50	22	31	<1.0	1.3	<1.0	<1.0	<1.0	<1.0	3.8	<1.0	<1.0	<0.50	<1.0
MW-705	UG/L	8/31/2011	1300	79	1.4	3.3	2.3	<0.50	13	66	<1.0	1.9	1.3	<1.0	<1.0	<1.0	4.2	<1.0	<1.0	0.56	1.2
MW-705	UG/L	11/17/2011	1100	56	7.6	24	29	6.3	73	<10	38	31	9.8	<1.0	<1.0	<1.0	2.1	<1.0	<1.0	<0.50	<1.0
MW-705	UG/L	2/14/2012	410	52	1.2	7.0	7.8	0.66	250	240	3.3	8.1	3.8	<1.0	<1.0	<1.0	8.9	1.3	<1.0	<0.50	1.8
MW-705	UG/L	2/14/2012	440	49	0.86	5.6	5.7	<0.50	250	230	<1.0	5.0	2.6	<1.0	<1.0	<1.0	8.3	1.3	<1.0	<0.50	1.5
NAVA / 700	116.4	2/4/2044	200	4.0	0.57	40.50	41.0	40.50	4.0	-40	44.0	41.0	-11.0	-11.0	44.0	41.0	2.0	-11.0	-11.0	40.50	11.0
MW-706	UG/L	2/4/2011	390	4.9	0.57	<0.50	<1.0	<0.50	4.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3.6	<1.0	<1.0	<0.50	<1.0

Table III
Summary of Total Petroleum Hydrocarbon (TPH) and VOC Results
Former CENCO Refinery
Santa Fe Springs, CA

Location	Unit	Date	TPH-g	В	Т	E	m/p-X	o-X	MTBE	TBA	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
MW-706	UG/L	4/11/2011	540	9.0	<0.50	<0.50	<1.0	<0.50	5.9	89	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	6.0	<1.0	<1.0	<0.50	2.6
MW-706	UG/L	8/31/2011	1100	25	0.86	0.65	1.9	<0.50	5.4	54	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.3	<1.0	<1.0	<0.50	1.9
MW-706	UG/L	11/18/2011	490	9.5	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3.3	<1.0	<1.0	<0.50	<1.0
MW-706	UG/L	2/14/2012	350	16	<0.50	<0.50	<1.0	<0.50	4.4	16	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.5	<1.0	<1.0	<0.50	2.5
MW-707	UG/L	2/4/2011	2000	520	120	7.6	120	150	15	<10	<1.0	10	7.8	4.1	8.7	<1.0	7.0	6.9	<1.0	2.7	<1.0
MW-707	UG/L	4/8/2011	7000	1000	560	180	670	310	15	<10	26	74	27	<1.0	3.2	<1.0	8.7	1.6	<1.0	4.0	<1.0
MW-707	UG/L	11/18/2011	8300	930	120	55	1900	120	<1.0	<10	150	250	53	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-707	UG/L	2/1/2012	10000	1200	150	100	1100	96	<1.0	<10	110	220	69	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-708	UG/L	2/4/2011	530000	1400	420	3000	8100	13	330	<10	370	2200	92	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-708	UG/L	9/1/2011	38000	1900	230	1200	2200	54	2300	2500	150	440	430	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-708	UG/L	11/18/2011	18000	1100	62	630	860	30	1000	<100	180	940	390	<10	<10	<10	<10	<10	<10	<5.0	<10
MW-708	UG/L	2/10/2012	18000	1700	74	770	1000	38	830	<10	170	1100	410	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-709	UG/L	2/4/2011	500	16	1.0	<0.50	4.8	1.1	2.8	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-709	UG/L	4/6/2011	580	26	0.86	0.89	4.1	0.72	4.6	<10	2.7	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-709	UG/L	9/1/2011	9900	1.1	<0.50	0.91	4.6	1.2	7.6	60	<1.0	2.4	1.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-709	UG/L	11/21/2011	1100	<0.50	<0.50	0.77	2.1	0.75	6.4	<10	4.6	1.4	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-709	UG/L	2/10/2012	760	<0.50	<0.50	<0.50	<1.0	<0.50	4.4	180	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-710	UG/L	2/8/2011	93	0.84	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	55	93	2.9	14	41	3.1	0.81	1.3
MW-710	UG/L	2/8/2011	110	0.75	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	54	89	2.9	14	41	3.1	<0.50	1.2
MW-710	UG/L	4/7/2011	<50	0.81	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	76	72	4.1	19	56	4.9	1.5	2.0
MW-710	UG/L	4/7/2011	100	0.84	<0.50	<0.50	<1.0	<0.50	<1.0	<10	1.0	<1.0	<1.0	82	92	4.0	18	54	4.7	1.5	1.9
MW-710	UG/L	9/2/2011	100	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	58	<1.0	<1.0	<1.0	76	100	2.2	18	54	4.6	1.2	1.3
MW-710	UG/L	9/2/2011	380	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	76	97	2.0	17	50	4.3	1.2	1.1
MW-710	UG/L	11/21/2011	95	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	51	71	1.5	13	35	3.6	<0.50	<1.0
MW-710	UG/L	11/21/2011	79	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	52	71	1.5	13	34	3.4	<0.50	<1.0
MW-710	UG/L	2/1/2012	170	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	66	110	2.1	23	71	6.0	<0.50	<1.0
		- 1- 1																			
MW-711	UG/L	2/8/2011	11000	520	440	120	380	250	11	<10	260	180	110	<1.0	8.4	<1.0	4.5	<1.0	<1.0	<0.50	7.5
MW-711	UG/L	4/6/2011	7100	<0.50	<0.50	65	160	50	20	<10	420	52	36	<1.0	1.1	<1.0	2.6	<1.0	<1.0	<0.50	8.7
MW-711	UG/L	9/2/2011	44000	1600	1800	650	3000	1100	25	<10	620	1800	550	<1.0	<1.0	1.3	3.8	<1.0	<1.0	<0.50	17
MW-711		11/21/2011	14000	370	290	530	1800	790	<1.0	<10	880	480	98	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-711	UG/L	2/10/2012	23000	1900	2100	440	1800	770	14	<10	360	480	150	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
NAVA 742	110/1	2/0/2011	14000	1200	F20	200	1000	200	22	-10	00	460	170	Z1 0	-1.0	-1.0	2.6	-1.0	-1.0	∠0.50	-1.0
MW-712 MW-712	UG/L UG/L	2/9/2011	14000 94	1200	520 140	380	1800	390 170	23	<10 <10	98	460	170 220	<1.0	<1.0 1.8	<1.0 <1.0	2.6	<1.0 <1.0	<1.0	<0.50	<1.0 2.2
		4/7/2011		860	77	270	1100		32		140	580		<1.0		1	3.4		<1.0	0.64	
MW-712	UG/L	9/2/2011	6300	440		100	350	72	19	<10	43	180	76	<1.0	<1.0	<1.0	2.8	<1.0	<1.0	0.71	<1.0
MW-712	UG/L	11/21/2011	8000	600	60	90	310	60	<1.0	<10	65	140	72	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-712	UG/L	2/13/2012	8300	850	57	62	180	46	21	94	24	86	44	<1.0	<1.0	<1.0	3.4	<1.0	<1.0	<0.50	1.7
NAVA 712	110/1	2/0/2011	200	20	∠0.50	<0.F0	1 7	∠0.50	2 5	-10	Z1 O	41.0	41.0	-1 O	Z1 0	Z1 0	2.2	~1.0	Z1 0	∠0.50	~1.0
MW-713	UG/L	2/9/2011	280	29	<0.50	<0.50	1.7	<0.50	3.5	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.2	<1.0	<1.0	<0.50	<1.0
MW-713	UG/L	4/8/2011	1000	150	<0.50	0.91	1.6	<0.50	75 71	120	2.8	<1.0	<1.0	<1.0	<1.0	<1.0	5.4	<1.0	<1.0	<0.50	<1.0
MW-713	UG/L	9/2/2011	310	73	3.0	1.7	7.8	3.6	71 230	100 220	11	7.0 2.0	1.6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-713	UG/L	11/22/2011	3300	900	1.6	3.4	12	2.6			2.2		<1.0	<1.0	<1.0	<1.0	2.5	<1.0	<1.0	<0.50	<1.0
MW-713	UG/L	11/22/2011	3500	800	1.9	3.8	14	2.9	230	230	2.7	2.4	<1.0	<1.0	<1.0	<1.0	2.8	<1.0	<1.0	<0.50	<1.0
MW-713	UG/L	2/13/2012	5500	1900	2.2	4.6	9.8	2.5	390	160	<1.0	1.6	<1.0	<1.0	<1.0	<1.0	3.1	<1.0	<1.0	<0.50	<1.0

Table III
Summary of Total Petroleum Hydrocarbon (TPH) and VOC Results
Former CENCO Refinery
Santa Fe Springs, CA

Location	Unit	Date	TPH-g	В	Т	E	m/p-X	о-Х	MTBE	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
							•														
MW-714	UG/L	2/14/2011	370	1.3	<0.50	<0.50	<1.0	<0.50	10	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-714	UG/L	4/7/2011	16000	16	4.0	2.1	11	1.9	16	<10	23	4.7	1.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-714	UG/L	9/2/2011	500	3.8	<0.50	<0.50	1.1	<0.50	9.7	37	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-714	UG/L	11/22/2011	430	9.0	<0.50	<0.50	<1.0	<0.50	8.4	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-714	UG/L	11/22/2011	490	4.7	<0.50	<0.50	<1.0	<0.50	7.9	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-714	UG/L	2/13/2012	760	3.9	<0.50	<0.50	<1.0	<0.50	7.1	23	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-714	UG/L	2/13/2012	730	5.0	0.72	<0.50	1.1	<0.50	8.4	29	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
		24.4224																			
MW-715	UG/L	2/14/2011	2000	480	12	1.7	24	7.4	2.8	<10	<1.0	2.6	4.2	<1.0	<1.0	<1.0	1.5	<1.0	<1.0	<0.50	<1.0
MW-715	UG/L	4/8/2011	1500	310	5.6	1.0	3.6	1.6	8.8	<10	3.8	<1.0	1.7	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-715	UG/L	9/2/2011	1100	420	1.4	2.2	6.1	2.5	7.9	20	3.8	2.5	4.6	<1.0	<1.0	<1.0	1.5	<1.0	<1.0	0.53	1.2
MW-715	UG/L	9/2/2011	5500	800	2.5	4.0	12	5.3	8.2	22	5.0	4.5	4.8	<1.0	<1.0	<1.0	1.5	<1.0	<1.0	0.56	1.9
MW-715	UG/L	11/22/2011	1500	450	1.5	6.0	<1.0	<0.50	8.5	11	3.5	4.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-715	UG/L	2/1/2012	860	270	2.6	1.7	5.6	1.1	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-1	UG/L	11/1/1989		390	3.9	2.1								<0.5A		<0.5A			3.5A	<0.5A	21
W-1	UG/L	3/1/1990		140	<5	<5								<5		<10			<5	<5	<20
W-1	UG/L	4/1/1990		200	12	12										<5	<25		1.6	<5	<5
W-1	UG/L	12/18/1996	800	78	<5	<5			<10		10	<5	<5			<5	<5		<5	<5	<10
W-1	UG/L	1/14/1998	1100	62	<5	<5			<5		<10	<5	<5	<5		<5	<5		<5	<5	16
W-1	UG/L	8/20/1998	1200	79	<5	<5			14		<10	<5	<5	<5		<5	8.6		8.4	<5	26
W-1	UG/L	1/29/1999	1400	57	<5	<5			<5		<10	<5	<5	<5		<5	<5		<5	<5	18
W-1	UG/L	7/19/1999	1500	48	<2	<2			<2		<20	<2	<2	<2		<2	<2		<2	<1	<1
W-1	UG/L	8/3/2000	880	29	<1	<1			10		<10	<1	<1	<1		<1	1.6		1.6	<0.5	7.3
W-1	UG/L	2/8/2001	<500	21	<1	<1			68		<10	<1	<1	<1		<1	2.3		<1	<0.5	6.3
W-1	UG/L	7/26/2001	620	18	<1	<1			62		<10	<1	<1	<1		<1	2.8		1.8	<0.5	6.8
W-1	UG/L	5/8/2002	280	7.7	<1	<1			5.9	44000	<10	<1	<1	<1		<1	3.1		<1	<0.5	6.4
W-1	UG/L	9/25/2002	210	12	<1	<1			1.9	30000	<10	<1	<1	<1		<1	6.5		<1	<0.5	14
W-1	UG/L	7/1/2004	460	14	2.8	1.5	<0.5	<0.5	3J	<100	<5	<5	<5	<5		4J	9.3		1J	<5	2
W-1	UG/L	10/6/2005	310	43	<1	<1	<1	<1	25	34	<10	<1	<1	<1		1.6	<1		<1	<0.5	7.1
W-1	UG/L	2/15/2006	266	32	<5	<5	<5	<5	22	37	<5	<5	<5	<5		1.3	<5		<5	<5	3.3
W-1	UG/L	8/3/2006	1100	86	<2	<2	<2	<2	77	100	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-1	UG/L	11/9/2006	470	100	<2	<2	<2	<2	65	78	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-1	UG/L	2/8/2007	500	77	<2	<2	<2	<2	21	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-1	UG/L	5/10/2007	890	110	0.57	0.61	<2	0.32	28	43	1	<2	<2	<2		0.42	<2		<2	<2	1.8
W-1	UG/L	8/9/2007	1100	140	0.84	0.84	<2	0.63	64	84	1.1	<2	<2	<2		0.47	<2		0.32	<2	1.9
W-1	UG/L	11/7/2007	1200	140	1.6	1.2	0.68	0.91	56	80	1.6	0.38	2.1	<0.32		0.7	<0.32		<0.27	<0.28	1.2
W-1	UG/L	2/7/2008	1000	96	<2	<2	<2	<2	31	51	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-1	UG/L	1/20/2009	230	15	<2	<2	<2	<2	3.1	23	<5	<2	<2	<2		0.87	<2		0.58	<2	2.8
W-1	UG/L	1/20/2009	220	19	<2	<2	<2	<2	3.9	35	<5 -	<2	<2	<2		1.1	0.4		0.61	<2	3.7
W-1	UG/L	4/24/2009	180	3.9	<2	<2	<2	<2	<5	26	<5	<2	<2	<2		1.4	<2		0.74	<2	9.5
W-1	UG/L	3/5/2010	270	3.3	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	1.3
W-1	UG/L	5/13/2010	260	9.3	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	1.2
W-1	UG/L	8/6/2010	260	17	<0.50	<0.50	-4.0	<0.50	<1.0	10	<1.0	<1.0	<1.0	<1.0	-4.0	<1.0	<1.0	:4.0	<1.0	<0.50	<1.0
W-1	UG/L	11/5/2010	150	15	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-1	UG/L	2/4/2011	200	2.7	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-1	UG/L	4/14/2011	150	1.4	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-1	UG/L	8/26/2011	130	3.9	<0.50	<0.50	<1.0	<0.50	1.3	16	<1.0	<1.0	<1.0	<1.0	<1.0	4.2	<1.0	<1.0	<1.0	<0.50	6.4

Table III
Summary of Total Petroleum Hydrocarbon (TPH) and VOC Results
Former CENCO Refinery
Santa Fe Springs, CA

W-1	Location	Unit	Date	TPH-g	В	Т	E	m/p-X	o-X	MTBE	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
W-10		UG/L	11/14/2011		12	<0.50	<0.50	- 1		<1.0	<10	<1.0		, ,	<1.0	<1.0	<1.0	,	,		•	<1.0
	-			160		<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	5.1	<1.0	<1.0		<0.50	<1.0
W-10 U-0.5 Z9/9200 2500 5400 5500 1400 1400 1800 570 5000 5500 5500 260 5000 5200	W-1	UG/L	2/6/2012	160	18	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	3.7	<1.0	<1.0	<1.0	<0.50	2.4
W-10 U-0.5 Z9/9200 2500 5400 5500 1400 1400 1800 570 5000 5500 5500 260 5000 5200																						
W-90 UGA 24/9007 38000 6400 2200 530 2200 710 6500 6500 6500 230 2200 6200	W-10	UG/L	11/8/2006	26000	8200	5000	570	2100	820	<100	<1000	340	360	110	<40		<40	<40		<40	<40	<100
W-10 UGA \$5112007 \$980 \$40	W-10	UG/L	2/9/2007	26000	5100	1600	410	1800	570	<500	<5000	<500	260	<200	<200		<200	<200		<200	<200	<500
W-10 UGA	W-10	UG/L	2/9/2007	28000	6400	2200	520	2200	710	<500	<5000	<500	280	<200	<200		<200	<200		<200	<200	<500
W-10 USA 13972007 5-900 5-9	W-10	UG/L	5/11/2007	7900	430	140	100	480	130	<10	84	100	130	48	<4		<4	6		8.2	1.2	3.6
W-10 UGA	W-10	UG/L	5/11/2007	7800	500	160	110	540	150	<25	85	150	150	53	<10		<10	6.6		8.8	1.4	3.9
W-10	W-10	UG/L	8/9/2007	5400	590	20	82	330	40	<25	68	59	90	33	<10		<10	6.4		8	<10	3
W-10	W-10	UG/L	11/9/2007	<12000	4700	460	330	1300	240	<32	<490	240	190	55	<32		<27	<32		<27	<28	<30
W-10	W-10	UG/L	2/8/2008	<28000	7200	280	300	1300	190	<500	<5000	140	140	38	<200		<200	<200		<200	<200	<500
W-10	W-10	UG/L	2/8/2008	<25000	7600	310	330	1400	200	<500	<5000	170	150	42	<200		<200	<200		<200	<200	<500
W-10	W-10	UG/L	1/21/2009	20000	8100	<200	440	1400	<200	<500	<5000	<500	230	<200	<200		<200	<200		<200	<200	<500
W-10	W-10	UG/L	4/27/2009	16000	7400	<200	490	1400	<200	<500	<5000	270	230	36	<200		<200	<200		<200	<200	<500
W-10	W-10	UG/L	4/27/2009	15000	5100	<200	350	830	<200	<500	<5000	220	190	31	<200		<200	<200		<200	<200	<500
W-10	W-10	UG/L	3/8/2010	8600	3100	<250	<250		<250	<500	<5000	<500	<500	<500	<500		<500	<500		<500	<250	<500
W10	W-10	UG/L	3/8/2010	12000	4200	4.4	200		1.6	<1.0	<10	110	93	18	<1.0		<1.0	<1.0		<1.0	7.3	<1.0
W-10	W-10	UG/L	5/17/2010	9500	3900	7.4	230		1.9	<1.0	<10	130	70	13	<1.0		<1.0	<1.0		<1.0	2.7	<1.0
W:10	W-10	UG/L	5/17/2010	10000	2900	10	160		1.7	<1.0	15	110		14	<1.0		<1.0	<1.0		<1.0	4.2	<1.0
W+10	W-10	UG/L	8/9/2010	7900	2400	12	130		1.9	<1.0	93	60	62	10	<1.0		<1.0	<1.0		<1.0	3.0	<1.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	W-10	UG/L	11/8/2010	7700	2900	45	160	140	6.4	<1.0	<10	180	56	8.1	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2.6	1.4
W+10	W-10	UG/L	2/8/2011	11000	2600	100	160	140	28	<1.0	<10	150	61	13	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.0	<1.0
W-10	W-10		1 1	12000	4900		240	190	38	<1.0		150	65		<1.0	<1.0	<1.0	<1.0	<1.0	1.6	12	<1.0
W-10			+			2.2		44	1.1	<1.0	140	97		5.7		<1.0	<1.0	<1.0		<1.0		<1.0
W-11 UG/L 11/9/2006 12000 96 7.8 54 140 21 <5 <50 <5 <50 <5 73 40 <2 <2 18 <2 <2 <2 <5 <5 <5 <5 <5	W-10	UG/L		8800	840	3.9		92		<1.0	<10	94	49	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-11	W-10	UG/L	2/8/2012	10000	3100	5.5	230	150	2.9	<1.0	<10	130	73	12	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	5.6	<1.0
W-11																						
W-11										+				-			}					<5
W-11			+					+		+	1		}									<5
W-11													•									<10
W-11 UG/L 11/8/2007 460 61 1.2 14 37 13 <0.32 <4.9 1 35 17 <0.32 <0.27 10 <0.27 <0.28 <0.27 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28 <0.28		•			_			.,		_												
W+11 UG/L 12/8/2010 77000 150 51 260 2300 690 17 43 48 1300 800 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	-	-				•						0.81										
W+11						1						1				.6.0	1		.4.0			<0.3
W-11 UG/L 4/15/2011 6300 410 15 50 390 18 <1.0 <10 3.4 83 280 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 </td <td></td> <td>.</td> <td></td> <td><1.0</td>											.											<1.0
W-11			+																			
W-11 UG/L 11/4/2011 10000 620 3.0 100 510 7.5 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0																						
W-11 UG/L 2/8/2012 2900 12 <0.50 6.2 50 0.80 <1.0 <10 2.7 24 39 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0<																						
W-12 UG/L 11/8/2006 1400 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2											1											
W-12 UG/L 2/7/2007 4800 <2 <2 <2 <5 50 <5 <2 <2 <2 <6.8 <2 <2 <5 W-12 UG/L 5/9/2007 220 <2 <2 <2 <5 40 <5 <2 <2 <2 <2 <0.31 4.3 <2 <2 0.37 <1.1 W-12 UG/L 8/8/2007 1100 <2	AA-TT	UG/L	2/8/2012	2900	12	<0.50	0.2	50	0.80	<1.0	<10	2./	24	39	<1.0	<1.0	<1.0	2.0	<1.0	<1.0	0.90	<1.0
W-12 UG/L 2/7/2007 4800 <2 <2 <2 <5 50 <5 <2 <2 <2 <6.8 <2 <2 <5 W-12 UG/L 5/9/2007 220 <2 <2 <2 <5 40 <5 <2 <2 <2 <2 <0.31 4.3 <2 <2 0.37 <1.1 W-12 UG/L 8/8/2007 1100 <2	W-12	UG/L	11/8/2006	1400	<2	<2	<2	<2	<2	<5	55	<5	<2	<2	<2		<2	5.4		<2	<2	<5
W-12 UG/L 5/9/2007 220 <2 <2 <2 <5 40 <5 <2 <2 <2 <2 0.31 4.3 <2 0.37 1.1 W-12 UG/L 8/8/2007 1100 <2										+			}	-								<5
W-12 UG/L 8/8/2007 1100 <2 <2 0.56 <2 <2 0.36 40 <5 <2 <2 <2 3.1 <2 <2 0.8 W-12 UG/L 11/6/2007 1500 0.37 <0.36 0.97 <0.6 <0.3 1.2 58 0.66 <0.23 <0.26 <0.27 2.6 <0.27 0.42 0.4 W-12 UG/L 2/8/2008 410 0.94 <2 3 <2 <2 0.82 54 2.5 <2 <2 <2 <2 0.45 <5 W-12 UG/L 1/20/2009 620 <2 <2 0.82 54 2.5 <2 <2 <2 <2 0.45 <5 W-12 UG/L 1/20/2009 620 <2 <2 0.82 54 2.5 <2 <2 <2 <2 0.48 5.4 <2 0.45 <5 <2 <2 <2																						1.1
W-12 UG/L 11/6/2007 1500 0.37 <0.36 0.97 <0.6 <0.3 1.2 58 0.66 <0.23 <0.26 <0.27 2.6 <0.27 0.42 0.4 W-12 UG/L 2/8/2008 410 0.94 <2																						0.85
W-12 UG/L 2/8/2008 410 0.94 <2 3 <2 <2 0.82 54 2.5 <2 <2 <2 1.8 <2 0.45 <5 W-12 UG/L 1/20/2009 620 <2 <2 0.69 <2 <2 <5 32 <5 <2 <2 <2 0.48 5.4 <2 <2 <2 W-12 UG/L 1/20/2009 620 <2 <2 <2 <5 <2 <2 <2 <2 <2 <2 <2 W-12 UG/L 1/20/2009 620 <2 <2 <2 <5 <2 <2 <2 <2 <2 <2 <2 <2 W-12 UG/L 1/20/2009 620 <2 <2 <2 <5 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2																						0.47
W-12 UG/L 1/20/2009 620 <2 <2 0.69 <2 <2 <5 32 <5 <2 <2 <2 0.48 5.4 <2 <2 <2 <2 <2.40											ì						ł					<5
	-		+																			2.4
W-12 UG/L 4/22/2009 1100 <2 <2 2.1 <2 <2 0.33 30 8.2 0.26 <2 <2 <2 5.7 5.7 5.8	W-12	UG/L	4/22/2009	1100	<2	<2	2.1	<2	<2	0.33	30	8.2	0.26	<2	<2		<2	3.7		<2	<2	1.5

Table III
Summary of Total Petroleum Hydrocarbon (TPH) and VOC Results
Former CENCO Refinery
Santa Fe Springs, CA

Location	Unit	Date	TPH-g	R	т	E	m/p-X	o-X	MTBE	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
W-12	UG/L	3/4/2010	400	<0.50	<0.50	2.1	ΠΙ, β-λ	<0.50	<1.0	<10	1.5	<1.0	<1.0	<1.0	ICL	<1.0	<1.0	1,1-DCL	<1.0	<0.50	<1.0
W-12	UG/L	5/12/2010	610	<0.50	<0.50	3.0		<0.50	<1.0	<10	2.1	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-12	UG/L	8/5/2010	650	<0.50	<0.50	3.5		<0.50	<1.0	<10	2.8	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-12	UG/L	11/4/2010	530	<0.50	<0.50	1.4	<1.0	<0.50	<1.0	<10	1.7	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-12	UG/L	2/3/2011	310	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-12	UG/L	4/19/2011	220	<0.50	<0.50	0.57	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.1	<1.0	<1.0	<0.50	2.7
					1																
W-12	UG/L	8/25/2011	360	<0.50	<0.50	1.3	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-12	UG/L	11/14/2011	63	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.2	<1.0	<1.0	<0.50	<1.0
W-12	UG/L	2/8/2012	400	<0.50	<0.50	2.2	<1.0	<0.50	<1.0	<10	1.6	<1.0	<1.0	<1.0	<1.0	<1.0	2.3	<1.0	<1.0	<0.50	2.2
\A/ 1.4.A	110/1	2/12/2009	42	-12	-2		-2		∠ Γ	ر - ۲۰۰	٧٢	-2	-22	2.2		1 1	0		0.46	0.27	-C
W-14A	UG/L	2/12/2008	42	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	2.3		1.1	9		0.46	0.37	<5
W-14A	UG/L	1/13/2009	<50	<2	<2	<2	<2	<2	<5	<50	<5 .5	<2	<2	<2		<2	<2		<2	<2	<5 .5
W-14A	UG/L	4/21/2009	54	<2	<2	<2	<2	<2	0.47	8.1	<5	<2	<2	1.3		0.86	8.7		0.44	0.4	<5
W-14A	UG/L	3/1/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	1.7		<1.0	<0.50	<1.0
W-14A	UG/L	5/10/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	1.9		<1.0	<0.50	<1.0
W-14A	UG/L	8/2/2010	<50	<0.50	<0.50	<0.50	-4.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	-4.0	<1.0	3.4	.4.0	<1.0	<0.50	<1.0
W-14A	UG/L	11/1/2010	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-14A	UG/L	1/31/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-14A	UG/L	4/4/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.6	<1.0	<1.0	<0.50	<1.0
W-14A	UG/L	8/22/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	5.8	1.0	5.2	<1.0	<1.0	<0.50	<1.0
W-14A	UG/L	11/7/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.8	<1.0	<1.0	<0.50	<1.0
W-14A	UG/L	1/30/2012	200	1.5	<0.50	38	<1.0	<0.50	<1.0	<10	<1.0	1.1	<1.0	<1.0	3.2	<1.0	10	1.4	<1.0	<0.50	<1.0
		 																			
W-14B	UG/L	2/12/2008	<50	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	0.72		<2	0.83		<2	<2	<5
W-14B	UG/L	1/13/2009	170	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	8.4		<2	4.8		<2	<2	<5
W-14B	UG/L	4/21/2009	65	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	19		2.6	9.6		2.2	0.45	<5
W-14B	UG/L	3/1/2010	99	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	5.6		<1.0	<0.50	<1.0
W-14B	UG/L	5/10/2010	99	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	1.2		1.1	6.2		<1.0	<0.50	<1.0
W-14B	UG/L	8/2/2010	55	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	3.1		<1.0	<0.50	<1.0
W-14B	UG/L	11/1/2010	88	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	2.0	45	2.0	10	14	1.2	<0.50	<1.0
W-14B	UG/L	1/31/2011	65	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	9.7	<1.0	2.0	3.1	<1.0	<0.50	<1.0
W-14B	UG/L	4/4/2011	<50	<0.50	1.8	<0.50	<1.0	<0.50	<1.0	48	<1.0	<1.0	<1.0	15	99	2.8	13	34	2.9	0.53	<1.0
W-14B	UG/L	8/22/2011	200	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	28	130	2.4	9.8	53	3.2	0.98	<1.0
W-14B	UG/L	11/7/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	5.1	<1.0	<1.0	1.8	<1.0	<0.50	<1.0
W-14B	UG/L	1/30/2012	220	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	22	100	<1.0	12	55	3.1	<0.50	<1.0
		 										ļ									
W-14C	UG/L	2/12/2008	260	1.2	<2	<2	<2	<2	<5	<50	<5	<2	<2	0.89		5.7	22		3.7	0.48	0.58
W-14C	UG/L	1/14/2009	120	2.5	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		8.8	34		3.4	<2	<5
W-14C	UG/L	4/21/2009	67	1.5	<2	<2	<2	<2	<5	10	<5	<2	<2	<2		4.5	23		2.1	<2	<5
W-14C	UG/L	3/1/2010	300	1.6	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		5.8	34		2.4	<0.50	<1.0
W-14C	UG/L	5/10/2010	120	0.58	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		2.0	13		<1.0	<0.50	<1.0
W-14C	UG/L	8/2/2010	77	1.1	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		4.6	35		2.4	<0.50	<1.0
W-14C	UG/L	11/1/2010	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-14C	UG/L	1/31/2011	60	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	3.8	1.1	9.9	3.0	<1.0	<0.50	<1.0
W-14C	UG/L	4/4/2011	<50	1.2	<0.50	<0.50	<1.0	<0.50	<1.0	27	<1.0	<1.0	<1.0	<1.0	24	3.9	30	16	3.1	<0.50	<1.0
W-14C	UG/L	8/22/2011	290	0.73	<0.50	<0.50	<1.0	<0.50	<1.0	22	<1.0	<1.0	<1.0	<1.0	21	2.3	26	12	2.2	<0.50	<1.0
W-14C	UG/L	11/7/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	1.2	<1.0	3.2	<1.0	<1.0	<0.50	<1.0
W-14C	UG/L	1/30/2012	100	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	3.4	<1.0	5.3	2.2	<1.0	<0.50	<1.0
																					

Table III
Summary of Total Petroleum Hydrocarbon (TPH) and VOC Results
Former CENCO Refinery
Santa Fe Springs, CA

Location	Unit	Date	TPH-g	В	т	F	m/p-X	о-Х	МТВЕ	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1.2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
W-15A	UG/L	2/11/2008	2700	620	4.9	5.1	111 11	<20	650	120	<50	<20	<20	<20	ICE	<20	<20	1,1-DCE	<20	1,2-DCA <20	<50
W-15A W-15A	UG/L	1/14/2009	230	7.4	<2	<2	<2	<2	190	170	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-15A W-15A	UG/L		530	8.4	<4		<4	<4	220	220						<4			<4	<4	<10
W-15A W-15A	UG/L	4/24/2009 3/2/2010	240	0.93	<0.50	<4 <0.50	<u> </u>	<0.50	44	94	<10 <1.0	<4 <1.0	<4 <1.0	<4 <1.0		<1.0	<4 <1.0		<1.0	<0.50	<1.0
W-15A W-15A		5/10/2010	260	1.5	<0.50	<0.50		<0.50	85	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0			<0.50	<1.0
	UG/L			+	ł											-			<1.0		
W-15A	UG/L	8/2/2010	310	0.54	<0.50	<0.50	-11.0	<0.50	71	180	<1.0	<1.0	<1.0	<1.0	-11.0	<1.0	<1.0	-11.0	<1.0	<0.50	<1.0
W-15A	UG/L	11/1/2010	61	<0.50	<0.50	<0.50	<1.0	<0.50	2.5	88	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15A	UG/L	11/1/2010	74	0.66	<0.50	<0.50	1.0	<0.50	6.8	98	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15A	UG/L	2/1/2011	14000	1400	610	400	1800	400	260	390	64	490	200	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.6	<1.0
W-15A	UG/L	4/5/2011	22000	<0.50	<0.50	<0.50	<1.0	<0.50	450	<10	150	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15A	UG/L	2/2/2012	62000	4400	2400	2400	9900	2300	930	<10	4.6	2900	880	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
		2/11/2000	1500	200			_			110										20	
W-15B	UG/L	2/11/2008	<1600	900	<20	<20	7	<20	20	110	<50	<20	<20	<20		<20	<20		<20	<20	<50 -
W-15B	UG/L	1/14/2009	340	160	<2	<2	5	<2	20	110	<5 -	<2	<2	<2		<2	<2		<2	<2	<5 -
W-15B	UG/L	4/24/2009	63	6.2	<2	<2	<2	<2	5.8	98	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-15B	UG/L	3/2/2010	220	3.8	<0.50	<0.50		<0.50	5.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-15B	UG/L	5/11/2010	230	20	<0.50	<0.50		<0.50	17	36	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-15B	UG/L	8/3/2010	250	14	<0.50	<0.50		<0.50	19	67	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-15B	UG/L	11/2/2010	740	38	<0.50	<0.50	3.2	0.74	50	87	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15B	UG/L	2/1/2011	120	7.0	1.7	0.55	4.0	1.4	22	21	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15B	UG/L	4/5/2011	1500	<0.50	66	18	120	64	130	<10	6.3	16	16	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15B	UG/L	8/23/2011	1400	120	40	17	110	30	260	210	<1.0	13	7.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15B	UG/L	8/23/2011	1100	110	34	15	100	29	200	220	<1.0	14	7.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15B	UG/L	11/10/2011	250	17	5.4	2.8	17	3.9	55	<10	<1.0	2.4	1.1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15B	UG/L	2/2/2012	280	35	14	4.4	31	18	100	80	<1.0	2.3	3.8	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
		- 4 4				_	_	_	_		_	_	_			_					
W-15C	UG/L	2/11/2008	<50	0.94	0.57	<2	<2	<2	< 5	18	< 5	<2	<2	<2		<2	1.1		0.45	0.35	0.34
W-15C	UG/L	1/15/2009	29	1.1	<2	<2	<2	<2	< 5	27	<5	<2	<2	<2		<2	5.7		1.2	0.86	0.9
W-15C	UG/L	4/24/2009	43	<2	<2	<2	<2	<2	<5	25	<5	<2	<2	<2		<2	1		<2	<2	<5
W-15C	UG/L	3/2/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	1.4		<1.0	<0.50	<1.0
W-15C	UG/L	5/11/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	1.6		<1.0	<0.50	<1.0
W-15C	UG/L	8/3/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	20	<1.0	<1.0	<1.0	<1.0		<1.0	4.7		1.0	0.54	1.5
W-15C	UG/L	11/2/2010	70	<0.50	<0.50	<0.50	<1.0	<0.50	2.9	<10	<1.0	<1.0	<1.0	<1.0	1.0	<1.0	1.7	<1.0	<1.0	<0.50	<1.0
W-15C	UG/L	2/1/2011	94	1.6	0.85	<0.50	2.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	1.8	<1.0	2.6	<1.0	<1.0	<0.50	<1.0
W-15C	UG/L	4/5/2011	120	10	4.8	1.9	10	2.6	4.2	<10	1.1	<1.0	<1.0	<1.0	4.6	<1.0	6.6	1.5	1.4	<0.50	1.8
W-15C	UG/L	8/23/2011	89	9.5	3.5	1.4	13	2.7	5.2	<10	<1.0	1.8	<1.0	<1.0	5.5	<1.0	6.5	1.6	<1.0	<0.50	<1.0
W-15C	UG/L	11/8/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15C	UG/L	1/31/2012	53	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	10	<1.0	<1.0	<1.0	<1.0	4.9	<1.0	5.8	1.5	<1.0	<0.50	<1.0
		44/5/5																			
W-16A	UG/L	11/9/2007	260	41	<0.36	<0.25	<0.6	<0.3	<0.32	30	<0.41	<0.23	<0.26	<0.32		<0.27	<0.32		2.6	<0.28	16
W-16A	UG/L	2/6/2008	310	40	<2	<2	<2	<2	<5 -	34	<5 -	<2	0.63	<2		0.88	<2		2.8	<2	14
W-16A	UG/L	1/21/2009	290	30	<2	<2	<2	<2	<5 -	<50	<5	<2	<2	<2		<2	<2		2.5	<2	7.2
W-16A	UG/L	4/27/2009	410	34	<2	<2	<2	<2	<5	20	<5	<2	0.27	<2		0.54	<2		1.8	<2	17
W-16A	UG/L	3/5/2010	220	4.2	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	2.9
W-16A	UG/L	5/14/2010	110	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-16A	UG/L	8/9/2010	120	0.93	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<u> </u>	<1.0	<1.0		<1.0	<0.50	<1.0
W-16A	UG/L	11/5/2010	90	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-16A	UG/L	2/7/2011	320	12	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.7	<0.50	1.1
W-16A	UG/L	4/18/2011	520	24	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.2	<0.50	2.2

Table III
Summary of Total Petroleum Hydrocarbon (TPH) and VOC Results
Former CENCO Refinery
Santa Fe Springs, CA

Location	Unit	Date	TPH-g	В	Т	E	m/p-X	о-Х	MTBE	TBA	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
W-16A	UG/L	8/26/2011	280	13	<0.50	<0.50	<1.0	<0.50	<1.0	30	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.2	<0.50	<1.0
W-16A	UG/L	11/8/2011	65	3.1	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-16A	UG/L	2/3/2012	230	16	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.1	<0.50	<1.0
	·																				
W-16B	UG/L	11/9/2007	37	7.4	<0.36	<0.25	<0.6	<0.3	<0.32	9.1	0.8	0.26	<0.26	<0.32		8.7	6.6		<0.27	<0.28	<0.3
W-16B	UG/L	2/6/2008	400	48	<2	0.33	<2	<2	<5	9.9	1.9	0.4	<2	<2		43	27		<2	<2	<5
W-16B	UG/L	1/21/2009	73	16	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		15	9.7		<2	<2	<5
W-16B	UG/L	4/27/2009	47	0.9	<20	<20	<20	<20	<50	<500	<50	<20	<20	<20		9.4	6.1		<20	<20	<50
W-16B	UG/L	3/8/2010	73	8.6	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		3.7	5.8		<1.0	<0.50	<1.0
W-16B	UG/L	5/14/2010	60	3.0	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		1.0	3.0		<1.0	<0.50	<1.0
W-16B	UG/L	8/9/2010	<50	1.3	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-16B	UG/L	11/5/2010	110	23	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	9.4	13	<1.0	1.2	<0.50	<1.0
W-16B	UG/L	2/7/2011	290	80	<0.50	<0.50	<1.0	<0.50	<1.0	<10	18	<1.0	<1.0	<1.0	3.5	50	70	2.0	8.5	<0.50	2.9
W-16B	UG/L	4/18/2011	550	100	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	6.4	100	89	2.6	9.2	<0.50	10
W-16B	UG/L	8/26/2011	89	20	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	12	16	<1.0	1.4	<0.50	1.1
W-16B	UG/L	11/8/2011	<50	24	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	1.0	19	13	<1.0	1.5	<0.50	<1.0
W-16B	UG/L	2/3/2012	210	30	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	1.4	24	16	<1.0	1.3	<0.50	<1.0
W-16C	UG/L	11/9/2007	170	18	<0.36	<0.25	<0.6	<0.3	<0.32	13	<0.41	<0.23	<0.26	<0.32		12	40		11	<0.28	5.6
W-16C	UG/L	2/6/2008	360	30	0.46	<2	<2	<2	<5	21	<5	<2	<2	<2		14	66		24	<2	18
W-16C	UG/L	1/21/2009	510	40	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		17	73		35	<2	24
W-16C	UG/L	4/28/2009	170	20	<2	<2	<2	<2	<5	8.2	<5	<2	<2	<2		12	41		14	<2	8.2
W-16C	UG/L	3/8/2010	95	2.5	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		1.2	9.1		1.6	<0.50	<1.0
W-16C	UG/L	5/14/2010	63	1.3	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	3.8		1.2	<0.50	<1.0
W-16C	UG/L	8/9/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-16C	UG/L	8/9/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-16C	UG/L	11/5/2010	390	14	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	7.6	30	1.4	11	<0.50	9.6
W-16C	UG/L	2/7/2011	440	33	0.54	<0.50	<1.0	<0.50	<1.0	<10	6.9	<1.0	<1.0	<1.0	<1.0	15	68	3.3	22	<0.50	14
W-16C	UG/L	4/18/2011	510	39	0.51	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	1.2	20	80	4.7	32	<0.50	30
W-16C	UG/L	8/26/2011	320	30	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	15	63	2.8	24	<0.50	16
W-16C	UG/L	11/9/2011	270	24	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	1.2	16	58	2.1	16	<0.50	<1.0
W-16C	UG/L	2/3/2012	250	23	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	1.0	16	54	2.8	17	<0.50	<1.0
W-17A	UG/L	2/14/2008	100	<2	<2	<2	<2	<2	<5	140	<5	<2	<2	<2		<2	6.2		0.47	1.4	0.7
W-17A	UG/L	1/16/2009	78	<2	<2	<2	<2	<2	<5	54	0.41	0.33	<2	<2		0.39	1.4		<2	<2	<5
W-17A	UG/L	4/22/2009	180	4.5	<2	<2	<2	<2	<5	57	<5	<2	<2	<2		1.9	7.7		0.51	0.65	<5
W-17A	UG/L	3/3/2010	51	<0.50	<0.50	<0.50		<0.50	<1.0	14	<1.0	<1.0	<1.0	<1.0		<1.0	1.6		<1.0	<0.50	<1.0
W-17A	UG/L	5/12/2010	110	1.1	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	4.2		<1.0	<0.50	<1.0
W-17A	UG/L	8/4/2010	56	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	1.7		<1.0	<0.50	<1.0
W-17A	UG/L	11/3/2010	69	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.3	<1.0	<1.0	<0.50	<1.0
W-17A	UG/L	2/2/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.0	<1.0	<1.0	<0.50	<1.0
W-17A	UG/L	4/20/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	38	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.9	<1.0	<1.0	<0.50	<1.0
W-17A	UG/L	8/24/2011	98	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.5	<1.0	<1.0	<0.50	<1.0
W-17A	UG/L	11/9/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	9.6	<1.0	<1.0	<0.50	<1.0
W-17A	UG/L	2/7/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	17	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.5	<1.0	<1.0	<0.50	<1.0
W-17B	UG/L	2/14/2008	39	<2	<2	<2	<2	<2	<5	30	<5	<2	<2	<2		<2	1.4		<2	<2	<5
W-17B	UG/L	1/16/2009	38	<2	<2	<2	<2	<2	<5	18	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-17B	UG/L	4/22/2009	<50	<2	<2	<2	<2	<2	<5	18	<5	<2	<2	<2		<2	0.71		<2	<2	<5

Table III
Summary of Total Petroleum Hydrocarbon (TPH) and VOC Results
Former CENCO Refinery
Santa Fe Springs, CA

Location	Unit	Date	TPH-g	В	т	F	m/p-X	o-X	MTBE	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
					-0.F0	_	III/p-x	<0.50						_	ICE	_		1,1-DCE	· ·	· ·	
W-17B	UG/L	3/3/2010	<50	<0.50	<0.50	<0.50			<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-17B	UG/L	5/12/2010	54	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-17B	UG/L	8/5/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	1.0	<1.0	<1.0		<1.0	<0.50	<1.0
W-17B	UG/L	11/3/2010	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-17B	UG/L	2/2/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-17B	UG/L	4/20/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	35	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-17B	UG/L	8/24/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-17B	UG/L	11/9/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-17B	UG/L	2/7/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	14	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-17C	UG/L	2/14/2008	36	<2	<2	<2	<2	<2	<5	25	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-17C	UG/L	1/16/2009	29	<2	<2	<2	<2	<2	<5	21	<5	<2	<2	<2		<2	1.2		<2	<2	<5
W-17C	UG/L	4/23/2009	<50	<2	<2	<2	<2	<2	<5	18	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-17C	UG/L	3/4/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-17C	UG/L	5/12/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-17C	UG/L	8/5/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-17C	UG/L	11/3/2010	<50	< 0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-17C	UG/L	2/2/2011	<50	< 0.50	<0.50	< 0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-17C	UG/L	4/20/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	31	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.50	<1.0
W-17C	UG/L	8/24/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-17C	UG/L	11/9/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-17C	UG/L	2/7/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
		, , -															_				
W-2	UG/L	11/1/1989		78	6.5	6.5								<0.5A		<0.5A			4.3A	<0.5A	75A
W-2	UG/L	3/1/1990		62	<0.5	<0.5							1	<0.5		<1			<0.5	<0.5	<2
W-2	UG/L	4/1/1990		83	26	4							 	<2.5		<5	13		3	<2.5	5.9
W-2	UG/L	12/18/1996	560	56	<2	<2			<2		<2	<2	<2	<2		<2	13		<2	<2	11
W-2	UG/L	1/14/1998	700	85	<5	<5			<5		<10	<5	<5	<5		<5	17		<5	<5	27
W-2	UG/L	8/20/1998	NS	NS	NS	NS			NS		NS	NS	NS	NS		NS	NS		NS	NS	NS
- ** 2	00/1	0,20,1330	113	113	113	113			113		143	113	143	143		113	113		113	113	
W-3	UG/L	11/1/1989		19	2.6	7.6								<0.5		<0.5			2.5A	<0.5	7.1A
W-3	UG/L	1/1/1990		<0.5	<0.5	<0.5								<0.5		<1			1	<0.5	<2
W-3	UG/L	3/1/1990		5.3	4.5	<0.5							 	<0.5		<1			0.5	<0.5	<2
	-	+				•							 				4 F				
W-3 W-3	UG/L UG/L	4/1/1990 12/18/1996	1300	3.4 590	4.5 <25	<1 <25			<10		<25	<25	<25	<0.5 <25		<1 <25	<5 <25		<0.5 <25	<0.5 <25	<2 <50
	-											1	1							 	
W-3	UG/L	1/13/1998	2200	280	<5 NC	<5 NC			<5 NC		<10	<5 NC	<5	<5 NC		<5 NC	<5		6	<5	51 NC
W-3	UG/L	8/20/1998	NS	NS	NS	NS			NS		NS	NS	NS	NS		NS	NS		NS	NS	NS
144.2.4	110 /1	1/12/1000	4200000	150000	4C000	25000			4200000				 								
W-3A	UG/L	1/13/1998	4300000	150000	<6000	35000			<200000		250	.05		.25		.0.5	.05		.0.5	.05	.50
W-3A	UG/L	8/20/1998	1100	220	<25	33			440		350	<25	<25	<25		<25	<25		<25	<25	<50
W-3A	UG/L	1/28/1999	690	160	<50	<50			340		240	<50	<50	<50		<50	<50		<50	<50	<100
W-3A	UG/L	7/19/1999	5400	120	<20	<20			380		<200	37	<20	<20		<20	<20		<20	<10	<10
W-3A	UG/L	1/13/2000	14000	140	<10	<10			210		<100	<10	<10	<10		<10	<10		<10	<5	7
W-3A	UG/L	8/4/2000	3400	170	<20	8.4			220		<50	2	2	<2		<2	<20		<20	<1	5
W-3A	UG/L	2/8/2001	2700	34	<1	2.9			12		63	13	4.4	<1		<1	<1		<1	<0.5	1.7
W-3A	UG/L	7/26/2001	3400	42	<1	1.7			6.2		11	15	<1	<1		<1	<1		<1	<0.5	27
W-3A	UG/L	5/6/2002	NS	NS	NS	NS			NS	NS	NS	NS	NS	NS		NS	NS		NS	NS	NS
W-3A	UG/L	9/25/2002	NS	NS	NS	NS			NS	NS	NS	NS	NS	NS		NS	NS		NS	NS	NS
W-3A	UG/L	2/16/2006	306	<1	<5	<5	<5	<5	6.2	16	<5	18	16	<5		<5	<5		<5	<5	<5

Table III
Summary of Total Petroleum Hydrocarbon (TPH) and VOC Results
Former CENCO Refinery
Santa Fe Springs, CA

Location	Unit	Date	TPH-g	В	Т	E	m/p-X	o-X	MTBE	TBA	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
W-3A	UG/L	8/3/2006	39000	<2	<2	<2	<2	<2	9	<50	38	<2	<2	<2		<2	<2	·	<2	<2	<5
W-3A	UG/L	11/9/2006	8100	<2	<2	<2	<2	<2	11	<50	37	6.4	9.5	<2		<2	<2		<2	<2	<5
W-3A	UG/L	2/8/2007	1400	<2	<2	<2	<2	<2	8.4	<50	30	3.9	6.1	<2		<2	<2		<2	<2	<5
W-3A	UG/L	5/10/2007	14000	0.66	<2	<2	<2	<2	7.8	23	16	2.3	3.6	<2		<2	<2		<2	<2	<5
W-3A	UG/L	8/9/2007	1900	0.79	<2	<2	<2	0.34	9.8	26	14	2	2.3	<2		<2	<2		<2	<2	<5
W-3A	UG/L	11/7/2007	1500	0.62	<0.36	<0.25	<0.6	<0.3	9.7	26	<0.41	0.64	0.67	<0.32		<0.27	<0.32		<0.27	<0.28	<0.3
W-3A	UG/L	2/7/2008	180	<2	<2	<2	<2	<2	10	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-4	UG/L	3/1/1990		120	<0.5	19								<0.5		<0.5	3.2		8.3	<0.5	<0.5
W-4	UG/L	4/1/1990		28	1.4	4.8								<1		<1	0.81		2.2	<1	4.3
W-4	UG/L	12/18/1996	420	80	<5	<5			<10		<5	<5	<5	<5		<5	<5		<5	<5	<10
W-4	UG/L	1/14/1998	920	120	<5	<5			<5		<10	<5	<5	<5		<5	<5		<5	<5	16
W-4	UG/L	8/20/1998	500	57	<5	<5			18		<10	<5	<5	<5		<5	<5		<5	<5	9.8
W-4	UG/L	1/29/1999	460	55	<5	<5			20		<10	<5	<5	<5		<5	<5		<5	<5	11
W-4	UG/L	7/19/1999	710	72	<2	<2			<2		<20	<2	<2	<2		<2	<2		<2	<1	<1
W-4	UG/L	1/13/2000	660	49	<1	<1			<1		<10	<1	<1	<1		<1	1.3		<1	<0.5	13
W-4	UG/L	8/3/2000	<500	47	<1	<1					<10	<1	<1	<1		1.2	<1		<1	<0.5	12
W-4	UG/L	2/8/2001	<500	42	<1	<1			<1		<10	<1	<1	<1		<1	<1		1.1	0.67	7
W-4	UG/L	7/26/2001	320	42	<1	<1			<1		<10	<1	<1	<1		<1	<1		1	<0.5	<0.5
W-4	UG/L	5/8/2002	250	33	<1	<1			<1	60000	<10	<1	<1	<1		2	<1		1.3	<0.5	5.2
W-4	UG/L	9/25/2002	290	62	<1	<1	0.66		<1	45000	<1	<1	<1	<1		3.8	<1		2	<0.5	<0.5
W-4	UG/L	7/1/2004	350	30	2.6	1.9	0.66	<0.5	<5	<100	<5	<5	<5	<5		1J	3J		2J	<5	11
W-4	UG/L	10/6/2005	350	31	<1	<1	<1	<1	<1	47	<10	<1	<1	<1		<1	6.4		1.7	<0.5	1.3
W-4	UG/L	2/15/2006	501	43	<5 -2	<5 -2	<5 -:2	<5	<1	38	<5	<5 -2	<5	<5		<5 -:2	2.8		2.5	<5 -2	2.4
W-4	UG/L	8/3/2006	2800	3.5	<2	<2	<2	<2	<5 	<50	<5	<2	<2	<2		<2	4.5		<2	<2	<5 -r
W-4	UG/L	11/9/2006	230	6.1	<2	<2	<2	<2	<5 	<50	<5	<2	<2	<2		<2	5.1		<2	<2	<5
W-4	UG/L	2/8/2007	200	3.1	<2	<2	<2	<2	<5 1.6	<50	<5 <5	<2	<2	<2		<2	4.7		<2	<2	<5 1
W-4 W-4	UG/L UG/L	5/10/2007 8/9/2007	170 280	1.5 1	<2 <2	<2	<2 <2	<2	1.6	30	<5 <5	<2 <2	<2 <2	<2		<2 <2	3.8		<2	<2 <2	1 0.59
W-4	UG/L	11/7/2007	180	1.9	<0.36	<2 <0.25	<0.6	<2 <0.3	2 1.4	18 22	<0.41	<0.23	<0.26	<2 <0.32		<0.27	3.2 3.6		<2 0.36	<0.28	<0.3
W-4	UG/L	2/7/2008	210	4.4	<2	<2	<2	<2	<5	55	<1	<2	<2	<2		<1	4.4		<2	<2	<0.3 <5
W-4	UG/L	2/7/2008	250	3.9	<2	<2	<2	<2	<5	50	<5	<2	<2	<2		<2	4.4		<2	<2	<5
W-4	UG/L	1/19/2009	140	0.51	<2	<2	<2	<2	<5	47	0.43	<2	<2	<2		<2	7.6		1	<2	1.8
W-4	UG/L	4/27/2009	92	<2	<2	<2	<2	<2	<5	34	<5	<2	<2	<2		<2	7.3		0.61	<2	1.9
W-4	UG/L	3/5/2010	600	1.5	<0.50	<0.50	``_	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	3.7		<1.0	<0.50	7.4
W-4	UG/L	5/13/2010	700	4.3	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	3.1		<1.0	<0.50	5.4
W-4	UG/L	8/6/2010	570	68	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	4.0		<1.0	<0.50	7.2
W-4	UG/L	11/4/2010	980	180	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	4.8
W-4	UG/L	2/8/2011	1800	480	<0.50	1.2	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	<1.0	<1.0	<0.50	8.6
W-4	UG/L	4/14/2011	1400	460	0.59	1.2	<1.0	<0.50	1.1	38	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.2	<1.0	<1.0	<0.50	11
W-4	UG/L	8/25/2011	840	190	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	1.8
W-4	UG/L	11/14/2011	1200	390	<2.5	0.76	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-4	UG/L	2/6/2012	1100	410	<0.50	0.79	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	6.2
																					1
W-7	UG/L	8/4/2000	<500	<0.5	<1	<1			<1		<1	<1	<1	<1		<1	<0.5		1.2	<1	<0.5
W-7	UG/L	2/8/2001	<500	<0.5	<1	<1			<1		<10	<1	<1	<1		<1	<1		<1	<0.5	<0.5
W-7	UG/L	7/26/2001	<100	<0.5	<1	<1			<1		<10	<1	<1	<1		<1	<1		<1	<0.5	<0.5
W-7	UG/L	5/7/2002	<100	<0.5	<1	<1			<1	<10000	<10	<1	<1	<1		<1	<1		<1	<0.5	<0.5
W-7	UG/L	9/24/2002	<100	<0.5	<1	<1			<1	<10000	<10	<1	<1	<1		<1	<1		<1	<0.5	<0.5

Table III
Summary of Total Petroleum Hydrocarbon (TPH) and VOC Results
Former CENCO Refinery
Santa Fe Springs, CA

WY USA 14/2806 CHI C	Location	Unit	Date	TPH-g	В	т	F	m/p-X	o-X	MTBE	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
							_	•							_	ICL	_	,	1,1-DCL	,	,	
W7	-	-					t							† †			1					
W7 USA 11/11/11/11/11 USA 12 C2 C2 C2 C3 C5 C5 C5 C5 C5 C5 C5	-													† †								
W7		,					1				•			 			1					
W7							t			+	•			 			+			+		
W7		-								+	+			} 						+		
W7			+								+			 			1					
W7		,				+								 			1					
W7	-	-			<0.28	<0.36	<0.25	<0.6	<0.3	<0.32	+	<0.41	<0.23	<0.26	<0.32		<0.27	<0.32		<0.27	<0.28	
W7	W-7	UG/L	2/4/2008	<50	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W7	W-7	UG/L	1/13/2009	<50	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W7	W-7	UG/L	4/21/2009	<50	0.31	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		1.7	<2	<5
W7	W-7	UG/L	3/4/2010	65	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		2.0	<0.50	<1.0
W-7	W-7	UG/L	5/17/2010	60	<0.50	<0.50	<0.50		0.51	<1.0	<10	2.3	<1.0	<1.0	<1.0		<1.0	<1.0		1.9	<0.50	<1.0
W-7	W-7	UG/L	8/4/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		2.6	<0.50	<1.0
W7	W-7	UG/L	8/4/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		2.6	<0.50	<1.0
W-7	W-7	UG/L	11/3/2010	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.5	<0.50	<1.0
W7	W-7	UG/L	2/2/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.4	<0.50	<1.0
W-7	W-7	UG/L	4/14/2011	<50	0.57	0.55	0.51	<1.0	0.57	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.8	<0.50	<1.0
W-7	W-7	UG/L	8/24/2011	<50	<0.50	<0.50	<0.50	<1.0	0.51	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.8	<0.50	<1.0
W7	W-7			<50		0.50	0.53	<1.0			<10	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0			
W-8		-	1 1		1						•			 			1					
W-8					.					+	•		}	 		+	1					
W-8		0 0, 1	2,0,2022		10.00	10.00	0.07	12.0	0.00	12.0	120	12.0	1210	12.0	12.0	12.10	12.0	12.0	12.0		10.00	1210
W-8	\//-R	ug/i	8/4/2000	<500	2.8	<4.6	<1			<1		<1	<1	<1	<1		<1	<1		<1	<0.5	<0.5
W-8			1 1				1							 			1					
W-8														 								
W-8											<10000			i								
W-8			1 1				1							 							_	
W-8					1	+		0.02	∠ 0 F		•			 			+				_	
W-8			+								+			t								
W-8														† †								
W-8 UG/L 11/10/2006 210 <2 <2 <2 <2 <2 <2 <5 <5		,			1	+	1	_		+			}	} 			+			+		
W-8		-			1									 			+			+		
W-8 UG/L 5/8/2007 110 0.49 0.73 0.33 <2 <2 <5 <50 <5 0.23 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <t><2 <2 <2 <2<!--</td--><td></td><td>-</td><td></td><td></td><td>1</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>† †</td><td></td><td></td><td>+</td><td>-</td><td></td><td></td><td></td><td></td></t>		-			1		1							† †			+	-				
W-8 UG/L 8/7/2007 170 0.49 0.82 0.44 <2 0.38 <5 <50 <5 0.3 <2 <2 <2 <2 <2 <2 <2 <2 <2 <5 W-8 UG/L 11/6/2007 160 0.52 0.75 0.4 <0.6					1									1								
W-8 UG/L 11/6/2007 160 0.52 0.75 0.4 <0.6 0.3 <0.32 7.5 <0.41 <0.23 <0.26 <0.32 <0.27 <0.32 <0.27 <0.32 <0.27 <0.32 <0.27 <0.32 <0.28 <0.3 W-8 UG/L 2/4/2008 160 0.46 0.81 0.39 <2 <2 <5 <50 <5 0.25 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2										+				} 								
W-8 UG/L 2/4/2008 160 0.46 0.81 0.39 <2 <2 <5 <50 <5 0.25 <2 <2 <2 <2 <2 <2 <5 <50 <5 <2 <2 <2 <2 <2 <2 <5 <50 <5 <2 <2 <2 <2 <2 <2 <5 <50 <5 <2 <2 <2 <2 <2 <2 <2 <5 <5 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <			+											 								
W-8 UG/L 1/13/2009 120 <2 <2 <2 <2 <5 <50 <5 <2 <2 <2 <2 <2 <5 <50 <5 <2 <2 <2 <2 <2 <2 <5 <50 <5 <2 <2 <2 <2 <2 <2 <2 <2 <2 <5 <5 <2 <2 <2 <2 <2 <2 <2 <5 <5 <2 <2 <2 <2 <2 <2 <2 <5 <5 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2			1 1											1								
W-8 UG/L 4/21/2009 150 0.45 0.82 0.37 <2 <5 <50 <5 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <td></td> <td>} </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														} 								
W-8 UG/L 3/4/2010 220 <0.50 0.85 <0.50 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0														<2							<2	
W-8 UG/L 5/17/2010 200 <0.50 <0.50 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <0.50 <1.0 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	W-8	UG/L	4/21/2009	150	0.45	0.82	0.37	<2		<5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-8 UG/L 5/17/2010 210 <0.50 <0.50 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <0.50 <1.0 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	W-8	UG/L	3/4/2010	220	<0.50	0.85	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-8 UG/L 8/4/2010 110 <0.50 0.80 <0.50 <0.50 <0.50 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	W-8	UG/L	5/17/2010	200	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-8 UG/L 11/4/2010 140 <0.50 0.60 <0.50 <1.0 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	W-8	UG/L	5/17/2010	210	<0.50	0.50	< 0.50		< 0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	< 0.50	<1.0
W-8 UG/L 2/7/2011 130 <0.50 0.85 <0.50 <1.0 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	W-8	UG/L	8/4/2010	110	<0.50	0.80	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-8 UG/L 2/7/2011 130 <0.50 0.85 <0.50 <1.0 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	W-8	UG/L		140	<0.50	0.60	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-8 UG/L 4/21/2011 140 0.56 1.0 <0.50 <1.0 <0.50 <1.0 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	W-8		2/7/2011	130	<0.50	0.85	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-8 UG/L 4/21/2011 130 0.57 1.1 <0.50 <1.0 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.														t								
			1											1								
			+		t																	

Location	Unit	Date	TPH-g	В	Т	E	m/p-X	o-X	MTBE	TBA	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
W-8	UG/L	11/10/2011	110	<0.50	0.64	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-8	UG/L	2/7/2012	90	<0.50	0.73	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-9	UG/L	11/7/2006	<50	<2	<2	<2	<2	<2	<5	<50	< 5	<2	<2	<2		<2	<2		<2	<2	<5
W-9	UG/L	2/6/2007	67	<2	<2	<2	<2	<2	<5	<50	< 5	<2	<2	<2		<2	<2		<2	<2	<5
W-9	UG/L	5/9/2007	50	<2	<2	<2	<2	<2	<5	17	<5	<2	<2	<2		<2	2		<2	<2	<5
W-9	UG/L	8/7/2007	38	<2	<2	<2	<2	<2	<5	22	<5	<2	<2	<2		0.31	3		<2	<2	<5
W-9	UG/L	11/6/2007	<30	<0.28	<0.36	<0.25	<0.6	<0.3	<0.32	19	<0.41	<0.23	<0.26	<0.32		0.31	3.8		<0.27	<0.28	<0.3
W-9	UG/L	2/5/2008	<50	<2	<2	<2	<2	<2	<5	23	0.5	<2	<2	<2		0.3	3.4		<2	<2	<5
W-9	UG/L	1/15/2009	46	<2	<2	<2	<2	<2	<5	18	<5	<2	<2	<2		<2	3.2		<2	<2	<5
W-9	UG/L	4/23/2009	36	<2	<2	<2	<2	<2	<5	18	<5	<2	<2	<2		<2	2.6		<2	<2	<5
W-9	UG/L	3/3/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	1.9		<1.0	<0.50	<1.0
W-9	UG/L	5/12/2010	80	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	2.8		<1.0	<0.50	<1.0
W-9	UG/L	8/4/2010	67	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	4.0		<1.0	<0.50	<1.0
W-9	UG/L	11/3/2010	87	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3.2	<1.0	<1.0	<0.50	<1.0
W-9	UG/L	2/2/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.5	<1.0	<1.0	<0.50	<1.0
W-9	UG/L	4/14/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	5.9	<1.0	<1.0	<0.50	<1.0
W-9	UG/L	8/24/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.4	<1.0	<1.0	<0.50	<1.0
W-9	UG/L	11/10/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.1	<1.0	<1.0	<0.50	<1.0
W-9	UG/L	2/8/2012	59	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	13	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.8	<1.0	<1.0	<0.50	<1.0

NOTES:

PCE - Tetrachloroethylene

TCE - Trichloroethylene

c1,2-DCE - cis-1,2-Dichloroethene

t1,2-DCE - trans-1,2-Dichloroethene

1,1-DCE - 1,1-Dichloroethene

1,2-DCA - 1,2-Dichloroethane

1,3,5-TMB - 1,3,5-Trimethylbenzene

1,2,4-TMB - 1,2,4-Trimethylbenzene

VC - Vinyl Chloride

B- Benzene

T - Toluene

E - Ethylbenzene

X - Xylenes, total

nBUT - n-Butylbenzene

sBUT - sec-Butylbenzene

tBUT - tert-Butylbenzene

nPRO - n-Propylbenzene

1,1 DCA - 1,1-Dichloroethane

ISO-P - Isopropylbenzene

MC - Methylene Chloride

NAP - Naphthalene

TRIM - Trichlorofluoromethane

PMXY - p/m-Xylenes

OXYL -o-Xylene

DIPE - Diisopropyl Ether (DIPE)

MTBE - Methyl-tert-Butyl Ether (MTBE)

TBA - tert-Butyl Alcohol (TBA)

Location	Unit	Date	TPH-g	В	T	E	m/p-X	o-X	MTBE	TBA	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC

ND - Not Detected above laboratory detection limits

ug/L - Micrograms per litre NA - Information not available

Well ID		рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
MW-104A	12/18/2009	7.31	5.31	3
MW-104A	3/3/2010	6.93	1.65	66
MW-104A	5/11/2010	8.06	NA	19
MW-104A	8/4/2010	7.65	2.32	205
MW-104A	11/3/2010	8.06	2.00	131
MW-104A	2/2/2011	8.46	3.05	136.4
MW-104A	4/14/2011	8.10	2.85	128.5
MW-104A	8/24/2011	7.53	4.47	19.6
MW-104A	11/10/2011	7.38	5.47	67
MW-104A	2/9/2012	8.79	2.42	-14.5
MW-106A	12/17/2009	7.25	7.29	-112
MW-106A	3/5/2010	6.73	4.71	116
MW-106A	5/13/2010	8.06	7.90	-38
MW-106A	8/6/2010	8.05	4.52	210
MW-106A	11/4/2010	8.23	3.09	77
MW-106A	2/3/2011	NA	NA	NA
MW-106A	4/19/2011	NA	NA	NA
MW-106A	8/25/2011	7.67	2.98	-28.1
MW-106A	11/14/2011	7.03	4.74	33
MW-106A	2/3/2012	NA	NA	NA
MW-107A	12/17/2009	7.20	6.99	-276
MW-107A	3/5/2010	8.70	1.81	-307
MW-107A	5/13/2010	8.30	NA	-370
MW-107A	8/6/2010	8.10	3.25	-280
MW-107A	11/4/2010	8.16	2.04	-245
MW-107A	2/3/2011	8.49	3.42	-338
MW-107A	4/19/2011	8.02	1.93	-276.8
MW-107A	8/25/2011	7.82	2.68	-216.7
MW-107A	11/14/2011	7.19	3.73	-161.3
MW-107A	1/31/2012	8.88	2.6	-240
MW-503B	12/15/2009	6.92	7.78	-137
MW-503B	3/8/2010	7.33	3.38	-96
MW-503B	5/17/2010	8.18	1.79	-69
MW-503B	8/9/2010	7.60	2.72	147
MW-503B	11/8/2010	7.62	2.93	7
MW-503B	2/4/2011	7.96	2.16	-46
MW-503B	4/15/2011	7.61	1.74	-46.4

Well ID		рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
MW-503B	8/29/2011	7.50	2.57	-96.1
MW-503B	11/16/2011	6.76	3.01	-41.3
MW-503B	1/31/2012	8.50	3.06	-150.6
W-1	12/15/2009	7.62	7.10	-39
W-1	3/5/2010	7.51	3.15	-111
W-1	5/13/2010	8.07	2.02	-197
W-1	8/6/2010	7.52	3.22	-22
W-1	11/5/2010	8.13	2.75	38
W-1	2/4/2011	8.18	4.84	-63.7
W-1	4/14/2011	7.65	1.94	37.3
W-1	8/26/2011	7.47	3.16	-86
W-1	11/14/2011	7.08	2.9	-75.9
W-1	2/6/2012	7.99	2.87	-79.4
W-4	12/15/2009	8.27	9.40	21
W-4	3/5/2010	7.09	3.41	-101
W-4	5/13/2010	8.00	3.87	-66
W-4	8/6/2010	7.74	3.48	16
W-4	11/4/2010	7.75	3.50	45
W-4	2/8/2011	7.67	5.53	-3.5
W-4	4/14/2011	7.79	4.47	107.8
W-4	8/25/2011	7.54	4.75	-92.5
W-4	11/14/2011	6.88	4.49	-47.3
W-4	2/6/2012	8.36	3.7	-53.2
W-8	12/18/2009	10.11	7.07	-230
W-9	3/3/2010	7.53	5.66	69
W-9	5/12/2010	8.07	7.15	-175
W-9	8/4/2010	7.36	3.36	-60
W-9	4/5/2011	7.71	4.07	82.3
W-9	8/24/2011	7.62	4.9	-4.9
W-9	11/10/2011	NA	NA	NA
W-9	2/8/2012	8.32	3.95	61.8
W-10	12/18/2009	7.21	6.89	-97
W-10	3/8/2010	NA	NA	NA
W-10	5/17/2010	NA	NA	NA
W-10	8/9/2010	NA	NA	NA
W-10	11/3/2010	7.53	3.39	-10

Well ID		рН	DO	ORP
	Sample Date	(SU)	(mg/L)	(mV)
W-10	11/8/2010	NA	NA	NA
W-10	2/2/2011	7.83	3.57	41.6
W-10	2/8/2011	7.28	5.51	-103
W-10	4/15/2011	NA	NA	NA
W-10	8/29/2011	7.14	2.7	-130.2
W-10	11/10/2011	NA	NA	NA
W-10	2/8/2012	NA	NA	NA
W-11	12/8/2010	NA	NA	NA
W-11	2/4/2011	7.67	5.62	-119
W-11	4/15/2011	7.58	1.68	-77
W-11	8/29/2011	7.35	2.2	-125.7
W-11	11/14/2011	6.93	2.63	-148.6
W-11	2/8/2012	8.38	3.3	45.6
W-12	12/18/2009	6.99	6.96	0
W-12	3/4/2010	7.53	3.15	-63
W-12	5/12/2010	7.87	NA	-180
W-12	8/5/2010	7.61	2.65	-100
W-12	11/4/2010	7.88	2.64	7
W-12	2/3/2011	8.28	2.85	-99
W-12	4/19/2011	7.77	2.10	15.2
W-12	8/25/2011	7.50	2.78	-58.5
W-12	11/14/2011	6.93	3.77	-34.7
W-12	2/8/2012	8.13	2.57	-113
W-14A	12/15/2009	7.65	7.76	-23
W-14A	3/1/2010	6.61	4.09	58
W-14A	5/10/2010	8.63	2.74	2
W-14A	8/2/2010	8.02	3.12	145
W-14A	11/1/2010	8.30	2.87	46
W-14A	1/31/2011	8.30	13.16	185.4
W-14A	4/4/2011	8.29	4.81	89.6
W-14A	8/22/2011	7.87	10.15	22.8
W-14A	11/7/2011	7.40	5.23	151.6
W-14A	1/30/2012	8.06	1.48	2.6
W-14B	12/15/2009	8.37	7.79	97
W-14B	3/1/2010	7.72	2.60	-5
W-14B	5/10/2010	8.43	3.00	-172

Well ID		рН	DO	ORP
	Sample Date	(SU)	(mg/L)	(mV)
W-14B	8/2/2010	7.80	4.60	33
W-14B	11/1/2010	8.13	3.37	37
W-14B	1/31/2011	8.17	19.82	194
W-14B	4/4/2011	8.27	5.95	82.6
W-14B	8/22/2011	7.95	7.9	22.7
W-14B	11/7/2011	7.22	4.92	67.8
W-14B	1/30/2012	8.70	2.9	-133.7
W-14C	12/15/2009	8.24	8.57	77
W-14C	3/1/2010	7.22	2.43	188
W-14C	5/10/2010	8.17	0.80	-77
W-14C	8/2/2010	7.60	3.55	128
W-14C	11/1/2010	7.89	3.15	49
W-14C	1/31/2011	7.88	10.85	188
W-14C	4/4/2011	7.98	3.27	51.3
W-14C	8/22/2011	7.76	4.24	-3.7
W-14C	11/7/2011	7.33	7.47	59.2
W-14C	1/30/2012	8.75	3.65	-65.2
W-15A	12/14/2009	7.31	9.15	85
W-15A	3/2/2010	7.12	2.67	202
W-15A	5/10/2010	7.90	NA	-228
W-15A	8/2/2010	7.39	1.96	-145
W-15A	11/1/2010	7.67	2.85	32
W-15A	2/1/2011	7.89	2.05	-33
W-15A	4/5/2011	8.00	2.60	-81.7
W-15A	8/23/2011	7.47	4.96	-148.7
W-15A	11/8/2011	(FPPH)	(FPPH)	(FPPH)
W-15A	2/2/2012	(FPPH)	(FPPH)	(FPPH)
W-15B	12/14/2009	7.39	7.44	-58
W-15B	3/2/2010	7.61	2.39	94
W-15B	5/11/2010	8.09	4.36	-15
W-15B	8/3/2010	7.74	3.42	107
W-15B	11/2/2010	8.06	3.18	40
W-15B	2/1/2011	8.15	4.58	286
W-15B	4/5/2011	8.10	2.92	62.4
W-15B	8/23/2011	7.56	3.85	-2.1
W-15B	11/10/2011	7.10	3.07	28.3

Well ID		рН	DO	ORP
	Sample Date	(SU)	(mg/L)	(mV)
W-15B	2/2/2012	8.17	2.31	-69.2
W-15C	12/14/2009	7.16	7.18	-53
W-15C	3/2/2010	7.33	2.27	148
W-15C	5/11/2010	8.16	4.73	-21
W-15C	8/3/2010	7.60	2.72	108
W-15C	11/2/2010	7.55	2.40	62
W-15C	2/1/2011	7.81	4.58	123.7
W-15C	4/5/2011	7.92	2.85	109
W-15C	8/23/2011	7.54	4.32	-2.4
W-15C	11/8/2011	7.32	6	119.4
W-15C	1/31/2012	8.72	3.11	-60.3
W-16A	12/16/2009	7.62	6.90	-62
W-16A	3/5/2010	7.03	3.47	-5
W-16A	5/14/2010	8.28	2.23	-54
W-16A	8/9/2010	7.98	2.65	106
W-16A	11/5/2010	8.03	6.15	48
W-16A	2/7/2011	7.82	4.09	249
W-16A	4/18/2011	7.88	4.00	94.9
W-16A	8/26/2011	7.73	4.11	-73.4
W-16A	11/8/2011	7.07	4.36	77.6
W-16A	2/3/2012	8.49	3.67	-70.0
W-16B	12/16/2009	8.23	7.61	-184
W-16B	3/8/2010	8.15	3.20	-236
W-16B	5/14/2010	8.62	0.77	-310
W-16B	8/9/2010	8.01	2.88	-217
W-16B	11/5/2010	8.30	2.68	-119
W-16B	2/7/2011	8.12	3.54	-297
W-16B	4/18/2011	8.47	2.56	-247
W-16B	8/26/2011	8.01	2.72	-217.4
W-16B	11/8/2011	6.89	8.68	-63.8
W-16B	2/3/2012	9.21	2.55	-206.7
W-16C	12/16/2009	8.15	7.12	-206
W-16C	3/8/2010	8.33	3.64	-237
W-16C	5/14/2010	8.68	NA	-295
W-16C	8/9/2010	8.02	2.57	-165
W-16C	11/5/2010	8.24	2.37	-72

Well ID		рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
W-16C	2/7/2011	8.03	4.34	-285
W-16C	4/18/2011	8.55	2.88	-249.5
W-16C	8/26/2011	7.81	2.71	-223.2
W-16C	11/9/2011	7.57	6.94	-185
W-16C	2/3/2012	8.84	2.51	-253.2
W-17A	12/18/2009	8.02	7.10	30
W-17A	3/3/2010	6.67	5.41	74
W-17A	5/12/2010	8.25	0.88	-40
W-17A	8/4/2010	7.78	2.35	62
W-17A	11/3/2010	8.17	2.95	76
W-17A	2/2/2011	8.36	5.96	349
W-17A	4/20/2011	7.85	3.51	-5.8
W-17A	8/24/2011	7.85	3.23	2.6
W-17A	11/9/2011	7.19	4.78	-13
W-17A	2/7/2012	8.46	2.87	-20
W-17B	12/18/2009	8.49	7.18	-173
W-17B	3/3/2010	7.87	4.80	-197
W-17B	5/12/2010	8.35	NA	-313
W-17B	8/5/2010	7.96	2.31	-189
W-17B	11/3/2010	8.09	2.56	-25
W-17B	2/2/2011	8.43	3.45	-269
W-17B	4/20/2011	8.11	3.32	-168.5
W-17B	8/24/2011	7.88	3.41	-153.7
W-17B	11/9/2011	7.52	2.94	-136.4
W-17B	2/7/2012	8.65	2.5	-174.3
W-17C	12/18/2009	8.79	8.74	-177
W-17C	3/4/2010	7.96	5.90	-209
W-17C	5/12/2010	8.49	3.03	-322
W-17C	8/5/2010	8.01	2.64	-167
W-17C	11/3/2010	8.16	2.79	-120
W-17C	2/2/2011	8.47	3.96	-301
W-17C	4/20/2011	8.26	2.08	-223.7
W-17C	8/24/2011	7.94	3.12	-201.7
W-17C	11/9/2011	7.43	3.36	-159.7
W-17C	2/7/2012	8.80	2.73	-226.4
EW-1	2/3/2011	7.90	6.61	-258

Well ID		рН	DO	ORP
Well 15	Sample Date	(SU)	(mg/L)	(mV)
EW-1	4/13/2011	8.15	2.86	-210
EW-1	8/29/2011	7.62	2.74	-293
EW-1	11/16/2011	(FPPH)	(FPPH)	(FPPH)
EW-1	2/6/2012	(FPPH)	(FPPH)	(FPPH)
MW-701	2/4/2011	6.09	NA	NA
MW-701	4/11/2011	7.60	3.67	180.6
MW-701	8/30/2011	7.50	3.98	-31.2
MW-701	11/16/2011	6.90	2.93	25.9
MW-701	2/1/2012	8.18	4.3	-58.5
MW-702	2/4/2011	6.04	NA	NA
MW-702	4/12/2011	7.70	3.29	103.1
MW-702	8/30/2011	7.34	3.23	-155.3
MW-702	11/16/2011	7.07	2.67	-172.7
MW-702	2/9/2012	7.89	4.73	-60.7
MW-703	2/4/2011	6.25	NA	NA
MW-703	4/12/2011	7.57	3.53	132.4
MW-703	8/30/2011	7.30	4.2	-87.1
MW-703	11/17/2011	6.92	2.77	-98
MW-703	2/14/2012	8.11	4.07	-26.3
MW-704	2/9/2011	6.08	NA	NA
MW-704	4/13/2011	7.46	4.60	134.6
MW-704	8/31/2011	7.40	4.02	99.4
MW-704	11/17/2011	6.93	2.51	-148.8
MW-704	2/14/2012	7.80	4.2	-31.6
MW-705	2/4/2011	6.01	NA	NA
MW-705	4/12/2011	7.79	3.40	127.6
MW-705	8/31/2011	7.78	3.7	-55.5
MW-705	11/17/2011	7.04	3.16	-130.7
MW-705	2/14/2012	8.12	4.09	-57.6
MW-706	2/4/2011	6.21	NA	NA
MW-706	4/11/2011	7.99	4.02	158.7
MW-706	8/31/2011	7.76	3.03	-41.2
MW-706	11/18/2011	6.93	3.06	180.8
MW-706	2/14/2012	8.16	3	-52.7
MW-707	2/4/2011	6.22	NA	NA
MW-707	4/8/2011	7.89	3.24	51.9

Well ID		рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
MW-707	9/1/2011	7.30	3.73	-9.4
MW-707	11/18/2011	6.89	2.8	11.3
MW-707	2/1/2012	8.19	3.1	-147
MW-708	2/4/2011	5.99	NA	NA
MW-708	4/6/2011	7.84	3.03	-119.8
MW-708	9/1/2011	7.51	3.45	-147.2
MW-708	11/18/2011	7.00	3.56	-161.3
MW-708	2/10/2012	8.09	2.75	-140.2
MW-709	2/4/2011	6.27	NA	NA
MW-709	4/6/2011	8.08	3.74	149.6
MW-709	9/1/2011	7.38	2.97	-37
MW-709	11/21/2011	6.76	2.97	148.5
MW-709	2/10/2012	8.08	2.61	-57.1
MW-710	2/8/2011	6.18	NA	NA
MW-710	4/7/2011	7.88	3.54	97.7
MW-710	9/2/2011	6.87	3.68	-10.2
MW-710	11/21/2011	6.81	2.86	255.6
MW-710	2/1/2012	8.47	3.45	-64.8
MW-711	2/8/2011	5.99	NA	NA
MW-711	4/6/2011	7.91	3.39	-59.2
MW-711	9/2/2011	7.06	3.54	-99.8
MW-711	11/21/2011	6.87	2.95	-133.6
MW-711	2/10/2012	8.04	3.45	-96.7
MW-712	2/7/2011	6.03	NA	NA
MW-712	4/7/2011	7.74	3.08	21.7
MW-712	9/2/2011	7.10	2.68	-59.7
MW-712	11/21/2011	6.90	2.65	-90.4
MW-712	2/13/2012	7.90	3.88	-83.5
MW-713	2/7/2011	6.13	NA	NA
MW-713	4/8/2011	7.95	3.84	99.5
MW-713	9/2/2011	7.20	3.13	-51.4
MW-713	11/22/2011	6.98	3.07	-28.7
MW-713	2/13/2012	7.97	3.65	-77.7
MW-714	2/8/2011	6.20	NA	NA
MW-714	4/7/2011	7.92	3.53	33.6
MW-714	9/2/2011	7.21	3.15	-63.4

Well ID		рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
MW-714	11/22/2011	6.96	2.77	-24.2
MW-714	2/13/2012	8.05	4.32	-70.5
MW-715	2/14/2011	7.50	NA	NA
MW-715	4/8/2011	7.78	2.59	16.3
MW-715	9/2/2011	7.15	3.2	-89.8
MW-715	11/22/2011	6.90	2.73	-125.4
MW-715	2/1/2012	8.32	2.87	-174.2

Notes:

DO dissolved oxygen mg/L milligram(s) per liter

mV millivolts

ORP oxidation-reduction potential

SU standard units NA Not Available

SOURCE OF BASE MAP

U.S. GEOLOGICAL SURVEY, 7.5 MIN QUAD., WHITTIER, CA. 1965, PHOTOREVISED 1981

SCALE: NOT TO SCALE

FORMER CENCO REFINERY 12345 LAKELAND ROAD SANTA FE SPRINGS, CALIFORNIA

SITE LOCATION MAP

FIGURE

GROUNDWATER SAMPLING LOG

ROJECT N	IAME:	CENCO						WELL NO.	EW-1		Walker	
PROJECT N	10.:	1003-001-	-300					SAMPLED B	Y: Frane So:	sic		
DATE: 2-	6-2012	1Q2012			_							
								WELL NOTE	S:	Typically has FPP	Н	
			WELL INFORMATION	N.				WELL COND	ITION:			
TOP OF CA	SING ELEV.					(ft.)		OK				
WELL DIAN	METER	4"				(inches)						
DEPTH OF	WELL	113.5	50		(ft.)			CONDITIONS	*			
DEPTH TO	WATER	107.6	55 (before purge)		(ft.)		Partly a	loudly + h	would (~ 6	8°F)		
HEIGHT OF	WATER COLU	MN	1)			(ft.))			
CASING VC	DLUME*		Hgt. × 0.163 Gal./Ft. =			(gal)		PURGING AND SAMPLING EQUIPMENT:				
PURGE VO	LUME		x 3 =			(gal)		YSI 556				
PRODUCT	THICKNESS /	07.65-	105.78 = 1.87	1		(ft.)		Interface pr	robe (200')			
Time:	Purge Volume	Flow Rate	рН	Sp.Cond.	Turbidity	DO	Temperature	TDS	ORP	Color	Odor	
	(Gal.)	(Gal./Min.)		(s/cm)	NTUs	mg/L	(F/C)					
Sample	Sample Time	Packing	Analyses	Container	Quantity	Preserv-	EDDIT	NOTES:	too-do	own skim		
No.	Time	1	102C00 VOC 0	1/04-	1 2						1 11	
NS	NS	ice	8260B - VOCs + Oxys	VOAs	3	HCL	- Werk b	rown (uea	14 block	will produite	uct at t	
NS	NS	ice	8015M - TPH-g	VOAs	3	HCL	Torned	to a "c	liccolate	wilk like	FP/H20	
	-				-		Total 1	dome pr	irged ac	50 gallon	S	
						-	Handy	dark FPP	1-	- 4 day		

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

2" well = 0.163 Gal./Foot

GROUNDWATER SAMPLING LOG

PAGE 1 OF 2

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE: 1-6-2012	102012	

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 41		(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	109.91	(ft.)
HEIGHT OF WATER COLUMN	20.09	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 13.2594	(gal)
PURGE VOLUME	x3=39.7782	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	W-1	Walker
SAMPLED B	Y: Frane Sosic	
WELL NOTE	S:	
WELL COND	ITION:	
GOOD		
	ONDITIONS:	
Partly C	ouly + ku	mid (~70°F)
0	0	
PURGING A	ND SAMPLING E	QUIPMENT:
YSI 556		
Interface pr	obe (200')	

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	На	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS 9/L	ORP ULV	Color	Odor
1430	5		8.26	2.596	/	2.46	23.02	1.755	16.1	Gray	Strone
1433	10		8.00	2.590	/	2.74	23.16	1.745	-63.7	Clear	Stone
1436	15		8.02	2.590	/	2.38	23.18	1.744	-73.0	Clear	Stron

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	Air-assist line used for purge
1	2-6-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
1	1500	ice	8015M - TPH-g	VOAs	3	HCL	LL_WI_020612_01 @ 15:00
							1

ADDITIONAL INFORMATION:

TOC = Top of well casing

4" well = 0.66 Gal./Foot

2" well = 0.163 Gal./Foot

^{*}Casing Volume = $r^2h(ft) \times 7.48 \text{ gal/ft.}^3$

Additional Groundwater Quality Parameters Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 2-6-20/2 4Q 2011

WELL NO. SAMPLED BY: F. Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity	DO mg/L	Temperature (F/C)	TDS 9/L	ORP MV	Color	Odor
1439	20	VAC TRUCK	7.98	2.594	/	2.08	23.23	1.745	-74.2	Clear	Strong
442	25		7.99	2.594	/	2.38	23.25	1.744	-78.6	Clear	Strons
1445	30		7.97	2.599	/	2.50	23.28	1.746	-75.7	Clear	Strong
449	35		8.01	2.58Z	/	2.34	23.06	1.744	-80.8	Cleer	Strong
452	40		7.99	2.585		2.87	23.13	1.741	-79.4	Clear	Strong
		-									
							1				

GROUNDWATER SAMPLING LOG

PAGE 1 OF 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 2-6-2012 1Q2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 4	(1	(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	111.13	(ft.)
HEIGHT OF WATER COLUMN	18.87	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 12.4542	(gal)
PURGE VOLUME	x3=37.3626	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	W-4	Walker
SAMPLED BY	: Frane Sosic	
WELL NOTES	S:	
WELL COND	ITION:	
OK-NO	T GREAT	
Overcas	onditions: + humid (~=	10°F)
PURGING A	ND SAMPLING EQUIP	MENT:
YSI 556		
Interface pro	obe (200')	

				PL	URGE DA	TA						
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS 9/L	ORP WV	Color	Odor	
205	5	VAC TRUCK	8.66	2.438	/	2.89	22.29	1.672	-37.1	Clear	Strong 8	horp
208	10		8.49	2.389	/	2.65	21.55	1.663	-61.2	Clear	Strong	1
216	15	-	8.48	2.225	/	4.00	18.23	1.660	-62.0	Clear	Strong	

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	Air-assist used for purge
1	2-6-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	Well began de-watering after-14 gal were remo
1	1345	ice	8015M - TPH-g	VOAs	3	HCL	Very fine mist now only
		-					W-4 DRY @ approx. 22 gallone *
							Will allow for re-change prior to collecting sample

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

2" well = 0.163 Gal./Foot

Additional Groundwater Quality Parameters
Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 2-6-20/2 4Q 2011

WELL NO SAMPLED BY:

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature	TDS 9/L	ORP M/	Color	Odor
1240	20	VAC TRUCK	8.36	2.134	/	3.70	16.16	1.668	-53.2	Clear	Strong
DRY *	25	/	/	/	/	/	/	/	/	/	1)
DRY *	30		/	/	1	1	/	1	1	/	/
DRY *	35	/	/	/	/	/	/	/	/	/	/
DRY *	40	-	/	/	_/_	1	/	1	/	/	/
								(3-1) VI			
								-	-		
~~											+

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE: 7-8-20/2	102012	

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 14" (OL	D DEEP PRODUCTION WELL	(inches)
DEPTH OF WELL		(ft.)
DEPTH TO WATER		(ft.)
HEIGHT OF WATER COLUMN		(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. =	(gal)
PURGE VOLUME	x 3 =	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	W-7	Site
SAMPLED BY:	Frane Sosic	
WELL NOTES:		(sample in any order)
WELL CONDITION	ON:	
G000 (a bit rusty)	
,	0'	
WEATHER CON		1
Clear/SUK	my (272°F	=)
/	0	
PURGING AND	SAMPLING EQUIP	MENT:
YS1 556		
Interface probe	200')	

					PURGE DA	TA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP	Color	Odor
				1							

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NO PURGE WELL
1	2-8-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	LL_W7_020812_01 @ 9:00
1	0900	ice	8015M - TPH-g	VOAs	3	HCL	Lew Edward & ra

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE: 2-7-2012	1Q2012	

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER		(inches)
DEPTH OF WELL		(ft.)
DEPTH TO WATER		(ft.)
HEIGHT OF WATER COLUMN		(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. =	(gal)
PURGE VOLUME	x 3 =	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	AA-0	Site
SAMPLED BY:	Frane Sosic	
WELL NOTES:	No purge well (s	ample in any order)
WELL CONDITIO	ON:	
OLD RU	STY PRODU	CTION WELL
WEATHER CON		
Cloudy /sc	aftered rain	Iwindy (5-15)
~ 50et		
PURGING AND	SAMPLING EQUIPM	ENT:
YSI 556		
Interface probe	(200')	

					PURGE DA	TA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP	Color	Odor
							+				

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	2-7-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	1. 1.10
1	1350	ice	8015M - TPH-g	VOAs	3	HCL	LL_W8_020712_01 @ 13:50

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

PROJECT NAME: CENCO

PROJECT NO.: 1003-001-300

PROJECT NO.:	1003-001-300	
DATE: 2.8.2012	1Q2012	

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER		(inches)
DEPTH OF WELL	110.00	(ft.)
DEPTH TO WATER	92.58	(ft.)
HEIGHT OF WATER COLUMN	17.42	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 2.83946	(gal)
PURGE VOLUME	x3=8.51838	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	VV-9	Site	
SAMPLED BY:	Frane Sosic		

WELL CONDITION:	
WEATHER CONDITIONS: Clear Survey ~ 75°F	
PURGING AND SAMPLING EQUIPMENT:	
YSI SS6 Interface probe (200')	

	_				PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity	DO mg/L	Temperature (F(C)	TDS	ORP M/	Color	Odor
1025	N5.	VAC TRUCK	8.06	2.327	/	5.50	15.10	1.867	156.3	Cloudy	Stight
1105	Ng	-11-	8.3Z	2.358	/	3.95	15.06	1.892	61.8	Clear	None
					/						

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	Very Slow purge-well is going dry
1	2.812	ice	8260B - VOCs + Oxys	VOAs	3	HCL	DRY @ approx. 9 gallous
i	1546	ice	8015M - TPH-g	VOAs	3	HCL	With allow reclarge prior to sampling
							LL_W9_020812_01 @ 15:46

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = D.66 Gal./Foot

PROJECT NAME:	CENCO		WELL NO. W-10 Site 2
PROJECT NO.:	1003-001-300		SAMPLED BY: Frane Sosic
DATE: 2-7-201 (PURGED)	5.44		Slow recharge: purge 1-2 days prior to WELL NOTES: collecting the sample
	WELL INFORMATION		WELL CONDITION:
TOP OF CASING ELEV	V.	(ft.)	OK
WELL DIAMETER	2"	(inches)	
DEPTH OF WELL	110.00	(ft.)	WEATHER CONDITIONS:
DEPTH TO WATER	97.63	(ft.)	Light rain and would (5-15 mph)
HEIGHT OF WATER O	COLUMN 12.37	(ft.)	U250°F
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 2. 0/63/	(gal)	PURGING AND SAMPLING EQUIPMENT:
PURGE VOLUME	x3=6.04893	(gal)	YSI 556

	PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP	Color	Odor	
DRU	2	VAC TRUCK	/					/	1	Light gay	/	
DRG	4		/	/		/	/			0,00	/	
DRY	6	1		/	/	1		/	1	/	1	

(ft.)

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	Slow re-charge well: typically goes Dry
110.	<u> </u>			0 to			
1	2-8-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	W-10 going dry almost right atter purge has
1	0800	ice	8015M - TPH-g	VOAs	3	HCL	DRY @ = 1.5 gillons
							0.0
					1		LL_W10_020812_01 @ 8:00
							LL-1010-02012-01 & 8.00

ADDITIONAL INFORMATION:

TOC = Top of well casing

PRODUCT THICKNESS

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

Interface probe (200')

Murex Environmental Inc.

PROJECT	NAME:	
		-

CENCO

PROJECT NO .:

1003-001-300

DATE: 2-8-20/2 1Q2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER		(inches)
DEPTH OF WELL	110.00	(ft.)
DEPTH TO WATER F	PH 97.82	(ft.)
HEIGHT OF WATER CO	LUMN /2.18	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 1.9	8534 (gal)
PURGE VOLUME	x3=5.956	50Z (gal)
PRODUCT THICKNESS	1.08 (on 1-26-2012)	(before purge 2.8-12) (ft.)

WELL NO.	W-11	Site 2
SAMPLED BY:	Frane Sosic	

WELL NOTES: Historically contained product

WELL CONDITION:

VERY GOOD (revoluted not long ago

WEATHER CONDITIONS:

Clear Sunny / light breeze (~76°F)

PURGING AND SAMPLING EQUIPMENT:

YSI 556

Interface probe (200')

				F	PURGE DA	TA						
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity	DO mg/L	Temperature (F(C)	TDS 9/L	ORP (UV	Color	Odor	
1153	2		8.26	1.999	/	3.16	20.03	1.436	81.0	Cloudy	Strong	Ga
155	4		8.40	2.055	1	2.92	21.79	1.424	57.5	Clear	Strong	0
157	6		8.38	2.066	1	3.30	22.06	1.424	45.6	Clear	Strong	

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	FPPH was more of a sheen
1	2-8-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	Hilky white liqued quickly dissipated " =
1	1207	ice	8015M - TPH-g	VOAs	3	HCL	
							LL_WII_020812_01 @ 12:07

ADDITIONAL INFORMATION:

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

TOC = Top of well casing

AP 111

4" well = 0.66 Gal./Foot

PROJECT NAME: CENCO
PROJECT NO.: 1003-001-300

DATE: 2-8-20/2 1Q2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER		(inches)
DEPTH OF WELL	116,00	(ft.)
DEPTH TO WATER	103.39	(ft.)
HEIGHT OF WATER COLUMN	12.61	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 2.05543	(gal)
PURGE VOLUME	x3=6.16629	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	VV-12	Site
SAMPLED BY:	Frane Sosic	
WELL NOTES:	May Be Dry	
WELL CONDITION		
GOOD (R	iger up00)	
-,	,,,,,	
WEATHER,CON	DITIONS:	-
Clear SUN	my ~ 75 of	
1	U	
PURGING AND	SAMPLING EQUIPMEN	NT:
YSI 556		
Interface probe	(200')	

PURGE DATA											
	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (FC)	9/L	ORP M V	Color	Odor
456	2	WAC TRUCK	8.26	2.232	/	3.20	24.65	1.457	-64.8	Gray	Slight
502	4	1	8.17	2,200	/	2.73	24.24	1.452	-103.4	Light day	Slight
505	6		8.13	2.205	/	2.57	24.20	1.452	-113.0	Clarker	Vent did

Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
2-8-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
1516	ice	8015M - TPH-g	VOAs	3	HCL	11 11/2 000010 01 0 15 1/
						LL_W12_020812_01 @ 15:16
	Time 2-8-12	7ime 2-8-12 ice	7ime 2-8-12 ice 8260B - VOCs + Oxys	7 Time 2 -8-12 ice 8260B - VOCs + Oxys VOAs	Time 2-8-12 ice 8260B - VOCs + Oxys VOAs 3	Time ative 2-8-1Z ice 8260B - VOCs + Oxys VOAs 3 HCL

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = $r^2h(ft) \times 7.48 \text{ gal/ft.}^3$

4" well = 0.66 Gal./Foot

PROJECT NAME: CENCO

PROJECT NO.: 1003-001-300

DATE: |-30-20|2 1Q2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER	2"	(inches)
DEPTH OF WELL	112.00	(ft.)
DEPTH TO WATER	92.37	(ft.)
HEIGHT OF WATER COLUMN	19.63	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 3. 19969	(gal)
PURGE VOLUME	x3=9.59907	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-14A	Hospital
SAMPLED BY:	Frane Sosic	

WELL CONDITION:	
OK	
WEATHER CONDITIONS	à:
Clear/sunny coc	I working
PURGING AND SAMPLII	NG EQUIPMENT:
YSI 556	
Interface probe (200')	

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity	DO mg/L	Temperature (FC)	g/L	ORP M/	Color	Odor
913	3	Vac Truck	8.09	1.578	/	1.79	20.70	1.113	-32.0	Clear	Done
916	6	1	8.06	1.607	/	2.53	22.11	1.105	- 40.5	Clear	None
721	9	1	8.06	1.587	/	1.48	21.08	1.115	2.6	Clear	None

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	SPLIT-SAMPLED W/CH2M HILL (Math)
1	1.30.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	- LL_14A_013012_01 @ 9:36
1	9:36	ice	8015M - TPH-g	VOAs	3	HCL	
						-	

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

PAGE 1 OF 2

PROJECT NAME: CENCO
PROJECT NO.: 1003-001-300

DATE: 1.30.2012 1Q2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 2"		(inches)
DEPTH OF WELL	67.00	(ft.)
DEPTH TO WATER	90.35	(ft.)
HEIGHT OF WATER COLUMN	16.65	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 12,49395	(gal)
PURGE VOLUME	x3=37:48185	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO. MW-14B Hospital
SAMPLED BY: Frane Sosic

WELL CONDIT	ION:		
OK		-	
WEATHER CO	NDITIONS:		
(lear/su	nue / lid	let breeze (-75°F
1	010		
PURGING ANI	D SAMPLING	EQUIPMENT:	
YSI 556			
Interface prol	be (200')		

					PURGE I	DATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature °C	g/L	ORP use U	Color	Odor
1112	5	WAC TRUCK	8.56	1.548	/	3.21	20.79	1.092	-69.4 (Youdy	None
1119	10		8.64	1.522	/.	3.28	19.99	1.094	-145.0	Clear	None
126	15	•	8.65	1.554		2.96	21.15	1.089	-148.6	Claser	None

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	SPLIT-SAMPLED W/CH2M HILL (MOH)
1	1.30.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	LL_14B_013012_01 @ 12:20
1	1220	ice	8015M - TPH-g	VOAs	3	HCL	12.140.01342.01 6 12.20

ADDITIONAL INFORMATION:

TOC = Top of well casing

4" well = 0.66 Gal./Foot

^{*}Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters

Page

2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 1.30.2012 4Q 2011

WELL NO. 14 B SAMPLED BY: F. Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (FC)	TDS 9/L	orp uV	Color	Odor
1132	20	VAC TRUCK	8.67	1.556	/	2.77	21.25	1.090	-150.2	Clear	None
1138	25		8.69	1,565	/	2.85	21.63	1.087	-125.8	Clear	None
1145	30		8.70	1.552	/	2.93	21.18	1.088	-128.7	Clear	None
1152	35		8.71	1,565	/	3.32	21.62	1.089	-119.0	Clear	None
1158	40		8.70	1.570	/	2.90	21.70	1.087	-/33.7	Clear	None
											1
			-								
									1		

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 1.30.2012

0.2012 102012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 2"		(inches)
DEPTH OF WELL	195.00	(ft.)
DEPTH TO WATER	90.60	(ft.)
HEIGHT OF WATER COLUMN	04.40	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 17.0172	(gal)
PURGE VOLUME	x3 = 51,0516	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO. MW-14C Hospital
SAMPLED BY: Frane Sosic

WELL CONDITION:

OK

WEATHER CONDITIONS:

Clear / Sunny / Light breeze (~75°F)

PURGING AND SAMPLING EQUIPMENT:

YSI 556

Interface probe (200')

	PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (FC)	9/L	ORP WV	Color	Odor	
1310	5	VACTRUCK	8.75	1.573	/	3.62	20.20	1.126	-109.0	Cloudy	Stiple	
1319	10		8.76	1.546	/.	3.80	19.29	1.128	-99.8	Cloudy	Sight	
1330	15	-	8.76	1.579	/	3.16	20.54	1.122	-85.1	Cloudy	Noone	

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	SPLIT-SAMPLED W/CH2M HILL (Matt
1	1.30.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	LL_14C_013012_01 @ 1600
1	1600	ice	8015M - TPH-g	VOAs	3	HCL	- LL_14C_013012_01 @ 1800

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

Additional Groundwater Quality Parameters Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 1.30-2012 4Q 2011 WELL NO. 14C SAMPLED BY: F. Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F ©	9/L	ORP UN V	Color	Odor
1343	20	VAC TRUCK	8.80	1.548	/	2.80	19.78	1.117	-46.6	Clear	None
1352	25		8.78	1.554	/	4.22	20.05	1.116	-80.9	Clear	None
1403	30		8.78	1.568	1	3.56	20.57	1.114	-81.3	Clear	None
412	35		8.80	1.537	/	2.FF	19.60	1.114	-83.8	Clear	None
423	40		8.78	1.538	/	2.95	19.74	1.111	-62.6	Clear	None
432	45		8.77	1.540		3.39	19.81	1.111	-54.5	Clear	None
1442	50		8.78	1.542		3.33	19.99	1.108	-44.4	Clear	None
1452	55		8.75	1.529	/	2.90	19.45	1.113	-83.7	Clear	None
1504	60		8.75	1.515	/	3.65	19.18	1.108	-65.2	Clear	None
							1				
									-		-
				-							
			-			1					
		-									

PROJECT NO.:	1003-001-300		SAMPLED BY: Frane Sosic
DATE: 2-2-2012	1Q2012		
	WELL INFORMATION		WELL CONDITION:
TOP OF CASING ELEV.		(ft.)	contains FPFH.
WELL DIAMETER	2"	(inches)	OK
DEPTH OF WELL	125.00	(ft.)	WEATHER CONDITIONS:
DEPTH TO WATER	110.25	(ft.)	Clear Sunny (~ 72°F)

(ft.)

(gal)

(gal)

(ft.)

					PURGE DA	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP	Color	Odor
										7-	
							(1) Measure	FPPH/DTV	U (2) A	H 110' of	stinger e
ample	Sample Time	Packing	Analyses	Container	Quantity	Preserv-		NOTES:			U

Sample	Sample Time	Packing	Analyses	Container	Quantity	Preserv-	NOTES:
No.	Time					ative	(3) Top-down FPPH skim begin 10:26
1	2-2-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	Approx. 45 gallows were purged (end 12:20)
1	1300	ice	8015M - TPH-g	VOAs	3	HCL	of which ~ 0.5 - 0.75 get was product.
							DTW 110.07 12:25
							DTW 109.95 13:00

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

CENCO

Hgt. x 0.163 Gal./Ft. =

(110.25-10999) = 0.26

x 3 =

PROJECT NAME:

HEIGHT OF WATER COLUMN

CASING VOLUME*

PRODUCT THICKNESS

PURGE VOLUME

4" well = 0.66 Gal./Foot

2" well = 0.163 Gal./Foot

MW-15A

Breeze picks up in the afternoon

PURGING AND SAMPLING EQUIPMENT:

WELL NO.

YSI 556

Interface probe (200')

Hospital

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE: 2-2-2012	1Q2012	

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 2	211	(inches)
DEPTH OF WELL	156.00	(ft.)
DEPTH TO WATER	110.11	(ft.)
HEIGHT OF WATER COLUMN	45.89	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 7.48007	(gal)
PURGE VOLUME	x3=22.44021	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-15B	Hospital
SAMPLED BY:	Frane Sosic	

WELL CONDITION:	
OK	
WEATHER CONDITIONS.	
WEATHER CONDITIONS:	
Low fag (cool AM (SOF)	
Warm Tclear/sonny by mid	- AM
PURGING AND SAMPLING EQUIPMENT:	
YSI 556	
Interface probe (200')	

0917	5	VAC TRUCK	8.79	1.934	PURGE I	DATA 2.64	19.22	1.411	93.6	Light adu	Slight
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS 9/L	ORP WV	Color	Odor
0923	10	VT	8.41	1.994	1	2.50	19.66	1.425	-52.1	Lightgray	Slight
0930	15	VT	8.34	1.995	. /	2.46	20.30	1.421	-63.3	Cloudy	Highet
0937	20	VT	8.25	2.009		2.60	20.60	1.430	-68.6	Cloudy	SCALIT
0942	25	VT	8.17	2.023	/	2.31	21.01	1.424	-69.2	Clear	Stight
Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	Stinger ke	NOTES:	likely due to	silt e bill	m quell
1	2-2-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	1. 151	2 0200	212-01	R IN.OY	1
-1	1000	ice	8015M - TPH-g	VOAs	3	HCL	166.101	2.002	12-01	E 10.00	

ADDITIONAL INFORMATION:

TOC = Top of well casing

4" well = 0.66 Gal./Foot

^{*}Casing Volume = $r^2h(ft) \times 7.48 \text{ gal/ft.}^3$

PAGE 1 OF 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: |-3|-20/2 1Q2012

WELL INFORMATION						
TOP OF CASING ELEV.		(ft.)				
WELL DIAMETER 2"		(inches)				
DEPTH OF WELL	197.34	(ft.)				
DEPTH TO WATER	109.77	(ft.)				
HEIGHT OF WATER COLUMN	187.57	(ft.)				
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 14, 27391	(gal)				
PURGE VOLUME	x3=42.82173	(gal)				
PRODUCT THICKNESS		(ft.)				

WELL NO. MW-15C Hospital
SAMPLED BY: Frane Sosic

WELL CONDITION:

GOOD

WEATHER CONDITIONS:

Clear Sunny light Greeze

PURGING AND SAMPLING EQUIPMENT:

YSI 556

Interface probe (200')

-					PURGE [DATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity	DO mg/L	Temperature	9/L	ORP MV	Color	Odor
932	5	VAC TRUCK	8.88	1.725	/	5.65	19.90	1.229	67.2	Cloudy	Stight
940	10		8.87	1.727		4.17	21.38	1.207	-79.6	Cloudy	Sight
948	15		8.83	1.736	/	4.03	21.69	1.203	-77.0	Class	Worke

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	SPLIT-SAMPLED W/ CHZM HILL (Mate
1	1.31.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
1	10:57	ice	8015M - TPH-g	VOAs	3	HCL	LL_15C_013112_01 € 10:57

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

Additional Groundwater Quality Parameters Page 2 of 2

PROJECT NAME: CENCO

1003-001-300 PROJECT NO .:

DATE: 1.31.2012 4Q 2011 WELL NO. 15C SAMPLED BY: F. Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	pН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	9/L	ORP	Color	Odor
955	20	VAC TRUCK	8.81	1.745	/	2.81	20.99	1.202	-76.0	Clear	None
1002	25		8.76	1.731	/	2.82	20.52	1.200	-68.1	Clear	None
1012	30		8.77	1.737		3.25	21.00	1.202	-62.5	Clear	None
1018	35		8.75	1.737	/	3.24	20.96	1.203	-67.2	Clear	None
1025	40		8.75	1.730	/	3.82	21.66	1.201	-63.3	Clear	None
1032	45		8.73	1.727	/	3.85	21.45	1.206	-61.5	Clear	None
1040	50		8.72	1.747	/	3.11	21.52	1.199	-60.3	Clear	None

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE: 2-3-20	12 102012	

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER		(inches)
DEPTH OF WELL	125.00	(ft.)
DEPTH TO WATER	113.40	(ft.)
HEIGHT OF WATER COLUMN	11.60	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 1,8908	(gal)
PURGE VOLUME	x3=5.6724	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-16A	Walker
SAMPLED B	Y: Frane Sosic	
WELL NOTE	S:	
WELL COND	ITION:	
GOOD)	
71 /	CONDITIONS:)
PURGING A	ND SAMPLING EQUIP	MENT:
YSI 556		
Interface pr	obe (200')	

				PU	IRGE DA	ΓΑ					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS g/L	ORP M V	Color	Odor
0912	3	VAC TRUCK	9.10	2,180	/	3.51	18.00	1.626	-72.6	Olive gray	Slight V
925	6	VAC TRUCK	8.49	2.076	/	3.67	14.98	1.664	-70.0	alebr)	SHALLT
	Nearly	went DR	y towards the e	ud of purge	(fine mi	st only)					1
Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	Water to	ka Wille	e before it.	como p;	very slow p
1	2-3-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL					-
1	0936	ice	8015M - TPH-g	VOAs	3	HCL	14_16A	_0203/2	2-010	9:36	

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE: 7-3-7017	102012	

	WELL INFORMATION				
TOP OF CASING ELEV.		(ft.)			
WELL DIAMETER		(inches)			
DEPTH OF WELL	160.00	(ft.)			
DEPTH TO WATER	109.46	(ft.)			
HEIGHT OF WATER COLUMN	50.54	(ft.)			
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 8, 23802	(gal)			
PURGE VOLUME	x3=24.71406	(gal)			
PRODUCT THICKNESS		(ft.)			

WELL NO.	MW-16B	Walker
SAMPLED B	Y: Frane Sosic	
WELL NOTE	:S:	
WELL COND	DITION:	
GOOD		
01	CONDITIONS:	
PURGING A	ND SAMPLING EQUIPM	IENT:
YSI 556		
Interface p	robe (200')	

0935	5	VAC, TRUCK	8.90	2.002	PURGE DAT	A 2.71	19.89	1.394	-192.1	Light gray	Hill CH
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	На	Sp.Cond.	Turbidity	DO mg/L	Temperature (F/C)	TDS	ORP UL	Color	Odor
942	10	(CON) (CON)	9.15	1.936		2.39	19.96	1.389	-1924	Cloudy	Hild
950	15		9.26	1.897		3.20	19.04	1.392	-193.3	Clear	Mild
953	20		9.25	1.975	1	3.00	20.89	1.393	-200,6	Cleer	Hild
000	25	1	9.21	1.992	1	2.55	21.30	1.393	-206.7	Clear	Hild
Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative		NOTES:			
1	2-3-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL					
1	1023	ice	8015M - TPH-g	VOAs	3	HCL	LL_16	5B_020	312-01	€ 10:	23

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

PAGE 1	of 2

MW-16C

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE: 2-3-2012	102012	

Lucia de la compansión de	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER		(inches)
DEPTH OF WELL	196.00	(ft.)
DEPTH TO WATER	109.12	(ft.)
HEIGHT OF WATER COLUMN	86.88	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 14.16/44	(gal)
PURGE VOLUME	x3=42.4843Z	(gal)
PRODUCT THICKNESS		(ft.)

WELL INO.	IAIAA-TOC	VVAIKEI
SAMPLED B	Y: Frane Sosic	
WELL NOTE	S:	
WELL COND	ITION:	
G00D		
- 1	conditions:	eze (273°F)
PURGING A	ND SAMPLING EQUIP	MENT:
YSI 556		
Interface pr	obe (200')	

				P	URGE DA	TA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DQ mg/L	Temperature	9/L	ORP un U	Color	Odor
1300	5	VAC TRUCK	9.25	1.417	/	177	22.93	0.957	-272.5	Clear	Hild CH
1306	10		9.14	1.459	/	2.54	22.23	1.002	-259.3	Clear	-11-
1313	15		9.03	1.583	/	2.78	22.30	1.084	-253.7	Clear	-11-

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	2-3-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
1	1500	ice	8015M - TPH-g	VOAs	3	HCL	LL_16C_020312_01 @ 15:00
_							

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters
Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 2-3-2012 4Q 2011

WELL NO. SAMPLED BY:

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. UB/cm)	Turbidity NTUs	DO mg/L	Temperature (F(C)	9/L	orp mV	Color	Odor
318	20	VACTRUCK	8.93	1.636	/	2.75	22.78	1.107	-253.0	Clear	Mild CH
324	25		8.92	1.644	/	2.42	22.56	1.121	-250.1	Clear	-11-
332	30		8.88	1,680	/	1.96	23.10	1.133	-252.8	Clear	-//-
337	35		8.84	1.691	/	1.71	22.79	1.144	-252.5	Clear	-/1-
350	40		8.86	1.696	/	2.13	22.85	1.150	-250.3	Clear	-11-
400	43		8.84	1.700	/	2.51	22.87	1.149	-253.2	Clear	-/1-
									_		
_											

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE: 2-7-2012	1Q2012	

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 2"		(inches)
DEPTH OF WELL	110.00	(ft.)
DEPTH TO WATER	96,96	(ft.)
HEIGHT OF WATER COLUMN	13.04	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 2.12552	(gal)
PURGE VOLUME	x3=6,37656	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	W-17A	Site
SAMPLED BY:	Frane Sosic	

WELL CONDITION:	
OK	
WEATHER CONDITIONS:	
Rain + wind (~5-15 uph)	
150°F	
PURGING AND SAMPLING EQUIPMENT:	
YSI 556	
Interface probe (200')	

	PURGE DATA														
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NFJ NTUs	DO mg/L	Temperature (FC)	TDS 9/L	ORP ut V	Color	Odor				
1000	5		8.75	2.126	/	4.62	18.89	1.561	37.2	Cloudy	Works				
1015	10		8.46	2.211	/	2.87	19.44	1.606	-20.0	Clary	None				

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	2-7-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	11 171 00071- 11 0 10:110
1	1048	ice	8015M - TPH-g	VOAs	3	HCL	LL_17A_020712_01 @ 10:48
							-

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

PAGE 1 OF 2

PROJECT NAME:

CENCO

PROJECT NO .:

DATE: 2-7-20/2 102012

1003-001-300

WELL INFORMATION (ft.) TOP OF CASING ELEV. WELL DIAMETER (inches) (ft.) DEPTH OF WELL DEPTH TO WATER (ft.) HEIGHT OF WATER COLUMN (ft.) Hgt. x 0.163 Gal./Ft. = //, 7//55 CASING VOLUME* (gal) x3 = 35. /3465 **PURGE VOLUME** (gal) PRODUCT THICKNESS (ft.)

W-17B WELL NO. Site SAMPLED BY: Frane Sosic

WELL CONDITION:

G000

WEATHER CONDITIONS:

Rain + wind (50°F)

PURGING AND SAMPLING EQUIPMENT:

YSI 556

Interface probe (200')

					PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity	DO mg/L	Temperature (F/C)	TDS 9/L	ORP ULV	Color	Odor
1027	5	WAC TRUCK	8.77	1.427	/	2.52	18.50	1.113	-172.1	Light gray	Mild
1042	10		8.74	1.485	/	2.65	20.13	1.064	-167.2	71170	-/1-
1054	15	V	8.77	1.433	/	3.44	18.84	1.056	-165.4	Cloudy	-11-

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	2-7-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	11 178 000712 01 0 10:21
1	1234	ice	8015M - TPH-g	VOAs	3	HCL	LL_178_020712_01 @ 12:34

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

Additional Groundwater Quality Parameters Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 2-7-2012 4Q 2011

WELL NO. SAMPLED BY: F. Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	9/L	ORP MV	Color	Odor
113	20	VAC TRUCK	8.76	1.378		2.83	17.42	1.048	-160.7	Clear	Hild
126	25		8.75	1.415	/	2.83	19.26	1.034	-164.2	Clear	Wild
144	30		8.67	1.497	/	2.25	21.47	1.042	-171.5	Clear	Hild
200	35		8.65	1.480	/	2,50	21.00	1.041	-174.3	Clear	Mild
										4	

PAGE 1 OF 2

PROJECT NAME: CENCO
PROJECT NO.: 1003-001-300

DATE: 2-7-20/2 1Q2012

WELL NO.	W-17C	Site
SAMPLED BY:	Frane Sosic	

WELL INFORMATION (ft.) TOP OF CASING ELEV. (inches) WELL DIAMETER 200.00 (ft.) DEPTH OF WELL (ft.) DEPTH TO WATER HEIGHT OF WATER COLUMN (ft.) Hgt. x 0.163 Gal./Ft. = 16.59503 (gal) **CASING VOLUME*** x3=49.78509 PURGE VOLUME (gal) PRODUCT THICKNESS (ft.)

GOOD		
WEATHER CO	IDITIONS:	
Rain +	wind (5-15"	uph)
~ 50°F		1
PURGING AND	SAMPLING EQUIPM	ENT:
YSI 556		
Interface prob	e (200')	

					PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity	DO mg/L	Temperature (F(C)	9/2	ORP M/	Color	Odor
1335	5	VACTRICK	8.86	1.404	1	3.63	21.63	1.643	-194.8	Gray	Strong
1340	10		8.82	1.390	/	2.19	22.01	1.320	-210.2	Cloudy	Strong
1345	15	4	8.79	1.300	1	2.26	21.88	1.267	-207.4	Clear	Store

HC/CH4/VCC

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	2-7-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	LL_17C_020712-01 @ 15:10
1	1510	ice	8015M - TPH-g	VOAs	3	HCL	122112202112-01 0 13 10
							-

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

Additional Groundwater Quality Parameters Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 2-7-2012 4Q 2011 WELL NO. SAMPLED BY: F. Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	pH	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	J/L	ORP WV	Color	Odor
1353	20	VAC TRUCK	8.68	1.431	/	3.10	21.43	1.113	-198.6	Clear	Strong
1400	25		8.80	1.366	/	2.64	22.00	1.007	-197.9	Clear	Strong
1407	30		8.74	1.323	/	1.82	20.63	0.938	-193.4	Clear	Strong
1413	35		8.81	1.284	/	2.59	23.02	0.868	-212.0	Clear	Strong
1418	40		8.79	1.292	/	2.46	23.53	0.863	-217.3	Clear	Strong
1423	45		8.85	1.266	/	2.66	22.80	0.863	-222.7	Clear	Strong
1427	50		8.80	1.297	/	2.73	23.90	0.861	-226.4	Clear	Strong
					-						

MW-104A

PROJECT NAME:	CENCO	WELL NO.
PROJECT NO.:	1003-001-300	SAMPLED BY: Frane Sosic
DATE: 2-9-2012	2 1Q2012	
		WELL NOTES:
	WELL INFORMATION	WELL CONDITION:

WELL INFORMATION					
TOP OF CASING ELEV.		(ft.)			
WELL DIAMETER		(inches)			
DEPTH OF WELL	100.00	(ft.)			
DEPTH TO WATER	93.42	(ft.)			
HEIGHT OF WATER COLUMN	17.70 - 11	(ft.)			
CASING VOLUME*	Hgt. x. 0.163 Gal./Ft. = 4, 3428	(gal)			
PURGE VOLUME	x3 = 13.0284	(gal)			
PRODUCT THICKNESS		(ft.)			

WELL NO.	Bloomfield
SAMPLED BY: Frane Sosic	
WELL NOTES:	
WELL CONDITION:	
OK (riser does not lock a	my longer
WEATHER CONDITIONS:	
Clear Suny Iwarm (a	770F)
light breeze	
PURGING AND SAMPLING EQUIPME	NT:
YSI SS6	
Interface probe (200')	

				P	URGE DA	TA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	9/L	ORP avV	Color	Odor
950	5	VAC TROCK	8.79	2.579	/	2.42	22.90	1.748	-14.5	Gray	Light
DRY	10	/	/	/	/	/	/	/	/	Olive	D
DRY	15	/	/	/	/	1	/	/	/	1	/

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	Well begins going dry ~ 4 gallons (fine wist)
1	2.9.12	ice	8260B - VOCs + Oxys	VOAs	3	HCI	DOLL & SOUNDY G SOUND
1	1536	ice	8015M - TPH-g	VOAs	3	HCL	Will allow well to re-charge prior to some
							LL_104A_020912_01 @ 1536

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

	-			
(4"	well	= 0.66	Gal.	Foot

PROJECT NA	AME:	CENCO						WELL NO.	1W-106A		Site
PROJECT NO	O.:	1003-001-3	00		-			SAMPLED BY:	Frane Sosic		
DATE: 2-	2-2012	1Q2012	2-3-20	12							
(PURGED)		(SAMPL	ED)							
			WELL INFORMA	TION				WELL CONDITIO	N:		
TOP OF CAS	SING ELEV.					(ft.)		OK			
WELL DIAM	IETER					(inches)					
DEPTH OF V	WELL		20.00			(ft.)		WEATHER CON			
DEPTH TO V	WATER		13.42			(ft.)		Clear/som	y Rid + 6	ACEBRIA:	72°F)
HEIGHT OF	WATER COLUM	1N	6.58.			(ft.)		1) (0	
CASING VO	LUME*	-	lgt. x.0.163 Gal./Ft. =	4.3428		(gal)		PURGING AND	SAMPLING EQL	JIPMENT:	
PURGE VOL	.UME		x3=/2	.0284		(gal)		YSI 556			
PRODUCT T	HICKNESS					(ft.)		Interface probe	(200')		
					PURGE DA	TA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature	TDS	ORP MV	Color	Odor
	5	***	X4 € = 3 q.Q.	54 × **							
	13		3								
Sample	Sample Time	Packing	Analyses	Container	Quantity	Preserv-	101 A	NOTES:	,	07	20.

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

8260B - VOCs + Oxys

8015M - TPH-g

VOAs

VOAs

4" well = 0.66 Gal./Foot

3

3

HCL

HCL

2" well = 0.163 Gal./Foot

106A_02031Z_01 € 11:13

somple tomorrow.

CENCO PROJECT NAME: 1003-001-300 PROJECT NO .: DATE: 1-31-2012 1Q2012

WELL INFORMATION					
TOP OF CASING ELEV.		(ft.)			
WELL DIAMETER 4"		(inches)			
DEPTH OF WELL	110.00	(ft.)			
DEPTH TO WATER	104.67	(ft.)			
HEIGHT OF WATER COLUMN	5.33	(ft.)			
CASING VOLUME*	Hgt. x. 0.163 Gal./Ft. = 3.5/78	(gal)			
PURGE VOLUME	x3=10.5534	(gal)			
PRODUCT THICKNESS		(ft.)			

WELL NO.	MW-107A	Bloomfield
SAMPLED B	Y: Frane Sosic	
WELL NOTE	s: Air-assist Quarton:	we used to pu
VERY 6	7000	
Clear/su	onditions:	(~74°F)
PURGING A	ND SAMPLING EQUIPM	MENT:
YSI 556		
Interface pr	obe (200')	

			r	URGE DA	IA					
Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	9/L	ORP M V	Color	Odor
5	VAC TRUCK	8.57	1.905		3.57	22.52	1.297	-157.7	BLACK	Strong H
10		8.89	1.893	/	2.83	23.14	1.277	-228.4	Lightgray	SALTE
15		8.92	1.865	/	4.28	22.18	1.280	-234.3	Clear	SAME
20		8.88	1.926	/	2.60	23.35	1.292	-240.0	Clear	SAME
Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	SPLIT-S	NOTES:	w/ CHZI	4 HILL	(Hatt)
1-31-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	11 10	MA 112	110 01	0 12.11	_
1-011-		8015M - TPH-g	VOAs	3	HCL	- 24-10)+H_UIS	112_01 6	10.7.	>
	(Gal.) 5 10 15 20 Sample Time Time 1-31-12	(Gal.) (Gal./Min.) 5	(Gal.) (Gal./Min.) 5	(Gal.) (Gal./Min.) (Gal./Min.) (Gal.) (Gal.) (Gal./Min.) (Gal./Min	(Gal.) (Gal./Min.)	(Gal.) (Gal./Min.) mg/L 5 VAC TROOK 8.57 1.905 3.57 10 8.89 1.893 2.83 15 8.92 1.865 4.28 20 8.88 1.926 2.60 Sample Time Packing Analyses Container Quantity Preservative 1-31-12 ice 8260B - VOCs + Oxys VOAs 3 HCL	(Gal.) (Gal./Min.)	(Gal.) (Gal./Min.)	(Gai.) (Gai./Min.) (Gai./Min.) (F/C) 9/L (MV) 5 VACTRUCK 8.57 1.905 3.57 22.52 1.297 -157.7 10 8.89 1.893 2.83 23.14 1.277 -228.4 15 8.92 1.865 4.28 22.18 1.280 -234.3 20 8.88 1.926 2.60 23.35 1.292 -240.0 Sample Time Packing Analyses Container Quantity Preservative SPLIT-SAMPLED W/ CH21 1-31-12 ice 82608-VOCs+Oxys VOAs 3 HCL 1.074 0131/2 04.4	(Gal.) (Gal./Min.)

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 1-31-2012 1Q2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 4"		(inches)
DEPTH OF WELL	110.00	(ft.)
DEPTH TO WATER	100.31	(ft.)
HEIGHT OF WATER COLUMN	9.69	(ft.)
CASING VOLUME*	Hgt. x 0.66 Gal./Ft. = 6.3954	(gal)
PURGE VOLUME	x3 = 19.1862	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-503B	Lakeland
SAMPLED B	Y: Frane Sosic	
WELL NOTE	s: Air-assist u	osed to purge
	(Rid has no be	olts)
WEATHER C	CONDITIONS:	(~72°F)
Garl	9/3/	
PURGING A	ND SAMPLING EQUIP	MENT:
YSI 556		
Interface pr	obe (200')	

				PURGE DA	ATA					
urge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity	DO mg/L	Temperature (F(C)	9/2	ORP WV	Color	Odor
	VAC TRUCK		1.864	1	4.64	22.44	1.272	-124.7	Olive gray	Strong +
15		8.46	1.890	1	2.67	22.55	1.281	-146.0	Clear	-11-
Sample Time	Packing	Analyses	Container	Quantity	Preserv- ative	SPLIT-S	NOTES:	w/ CH2		
1-31-12		8260B - VOCs + Oxys	VOAs	3	HCL	11 5	03 B C	13112	1 @ 1	5:00
1-31-12	ice	8260 B (VC(s)	VOAs	3	HCI	_				
1510	ice	80/5 H (TPHg)	1/O/As	3	HCI					
S	(Gal.) 5 10 15 20 sample Time Time -31-12	(Gal.) (Gal./Min.) 5	(Gal.) (Gal./Min.) 5 VAC TRUCK 8.60 10 8,47 15 8.46 20 4 8.50 Jample Time Packing Analyses Time 8260B - VOCs + Oxys 1500 ice 8015M - TPH-g 1-31-12 ice 8260 B (VOCs)	(Gal.) (Gal./Min.) (Gal./Min.) (Gal.) (Gal.) (Gal./Min.) (Gal./Min	5 VAC TRUCK 8.60 1.864 10 8.47 1.887 15 8.46 1.890 20 1 8.50 1.876 imple Time Packing Analyses Container Quantity Time -31-12 ice 8260B - VOCs + Oxys VOAs 3 1500 ice 8015M - TPH-g VOAs 3 1-31-12 ice 8260 B (VOCs) VOAs 3	5 VAC TRUCK 8.60 1.864 4.64 10 8.47 1.887 3.30 15 8.46 1.890 2.67 20 8.50 1.876 3.06 Jample Time Time Time Time Time Time Analyses Container Container Quantity Preservative 31-12 Ice 8260B - VOCs + Oxys VOAs 3 HCL 1500 Ice 8015M - TPH-g VOAs 3 HCL 1-31-12 Ice 8260 B (VOCs) VOAs 3 HCL	5 VAC TRUCK 8.60 1.864 4.64 22.44 10 8.47 1.887 3.30 22.61 15 8.46 1.890 2.67 22.55 20 1.876 3.06 22.51 iample Time Time Time Time Time Packing Analyses Container Quantity Preservative 731-12 Ice 8260B - VOCs + Oxys VOAs 3 HCL 1500 Ice 8015M - TPH-g VOAs 3 HCL 1510 Ice 8260 B (VCCs) VOAs 3 HCL 1510 Ice 8015 M (TPHa) IVOAs 3 HCL	5 VAC TRUCK 8.60 1.864 4.64 22.44 1.272 10 8.47 1.887 3.30 22.61 1.283 15 8.46 1.890 2.67 22.55 1.281 20 1.876 3.06 22.51 1.279 iample Time Time Time Time Time Time Time Tim	5 VAC TRUCK 8.60 1.864 4.64 22.44 1.272 - 124.7 10 8.47 1.887 3.30 22.61 1.283 - 142.5 15 8.46 1.890 2.67 22.55 1.281 - 146.0 20 8.50 1.876 3.06 22.51 1.279 - 150.6 1	5 VAC TRUCK 8.60 1.864 4.64 22.44 1.272 -124.7 Olive gray 10 8.47 1.887 3.30 22.61 1.283 -142.5 Cloudle 15 8.46 1.890 2.67 22.55 1.281 -146.0 Clear 20 1.876 3.06 22.51 1.279 -180.6 Clear iample Time Time Time Time Time Time Time Tim

ADDITIONAL INFORMATION:

TOC = Top of well casing

^{*}Casing Volume = r2h(ft) x 7.48 gal/ft.3

PAGE 1 OF 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 2-1-2012 102012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER		(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	98.85	(ft.)
HEIGHT OF WATER COLUMN	31.15	(ft.)
CASING VOLUME*	Hgt. x0.66 Gal./Ft. = 20,559	(gal)
PURGE VOLUME	×3=61.677	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO. MW-701 Hospital
SAMPLED BY: Frane Sosic

Well Notes: No

New 4" well Air-assist used to purge

WELL CONDITION:

EXCELLENT

WEATHER CONDITIONS:

Mostly clear & sunny (~ 75°F)

PURGING AND SAMPLING EQUIPMENT:

YSI 556

Interface probe (200')

					PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity	DO mg/L	Temperature (F(C)	TDS	ORP	Color	Odor
1317	5	VAC TRUCK	8.63	1.967	/	4.43	23.34	1.320	-25.4	Cloudy	Mild
1319	10		8.33	1.956	/	2.92	22.98	1.323	-60.0	Cloudy	Slight
1321	15	-	8.30	1.944	/	3.05	22.77	1.319	-67.3	Clear	Non

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	SPLIT-SAMPLED W/ CHZM HILL (Mat)
1	2-1-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	11 701 020112 01 0 11/00
1	1400	ice	8015M - TPH-g	VOAs	3	HCL	LL_701_020112_01 @ 1400

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters
Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 2-1-20/2 4Q 2011

WELL NO. MW-701 SAMPLED BY: F. Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature	TDS 9/L	ORP Me V	Color	Odor
1323	20	VAC TRUCK	8.23	1.935	/	3.46	22.57	1.319	-66.4	Claser	None
1324	25		8.27	1.922	/	4.05	22.27	1.318	-62.8	Clear	None
1326	30		8.25	1.928	/	4.48	22.42	1.319	-55.4	Clear	None
1328	35		8.22	1.934	/	5.00	22.50	1.319	-56.2	Clear	done
1331	40		8.21	1.948	/	5.08	22.56	1.321	-537	Clear	None
1333	45		8.20	1.952	/	5.13	22.60	1.322	-50.0	Clear	Noue
1335	50		8.17	1.952	/	4.35	22.69	1.328	-53./	Clear	None
1338	55		8.16	1.955	/	4.80	22.92	1.325	-52.6	Clear	None
1341	60		8.16	1.961		4.44	22.90	1.326	-57.3	Clear	None
1344	65		8.18	1.954	/	4.30	22.86	1.322	-58.5	Clear	None

PAGE 1 OF 2

PROJECT NAME: CENCO

PROJECT NO.: 1003-001-300

DATE: 2-9-20/2 1Q2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER		(inches)
DEPTH OF WELL	/30.00	(ft.)
DEPTH TO WATER	98.74	(ft.)
HEIGHT OF WATER COLUMN	31.26	(ft.)
CASING VOLUME*	Hgt. x 0.66Gal./Ft. = 20.6316	(gal)
PURGE VOLUME	x3=61.8948	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	IVIVV-702	Hospital
SAMPLED BY:	Frane Sosic	
Well Notes:	New 4" well	
WELL CONDITION	ON:	
WEATHER CON	getting warped	
-	y/warm (~ 80°F)
PURGING AND	SAMPLING EQUIPMENT	:
YSI 556		
Interface prob	e (200')	

					PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature	9/L	ORP W/	Color	Odor
1053	5	VAC TRUCK	8.30	2.252	/	2.65	24.96	1.466	-75.5	Give gray	Hild
1056	10		8.05	2.272	/	1.98	25.20	1.467	-63.6	-11-1	-11-
1100	15		7.94	2.297	/	2.18	25.56	1.477	-99.2	Gray	-11-

Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	Air-line used for purge
2.9.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	Good H20 production in MW-702
1300	ice	8015M - TPH-g	VOAs	3	HCL	11_702_020912_01 @ 13:00
2.9.12	ice	8260B	VOAs	3	HCI	LL_702_020912_01 € 13:00
1313	ice	8015 H	WAs	3	HCI	LL_702_020912_02 @ 13:13
	7 Time 2.9.12 1300	7 Time 2.9.12 ice 1300 ice	7 Time 8260B - VOCs + Oxys 1300 ice 8015M - TPH-g	Time 8260B - VOCs + Oxys VOAs 1300 ice 8015M - TPH-g VOAs	Time 2 · 9 · 12 ice 8260B - VOCs + Oxys VOAs 3 /300 ice 8015M - TPH-g VOAs 3	Time ative 2.9.12 ice 8260B - VOCs + Oxys VOAs 3 HCL /300 ice 8015M - TPH-g VOAs 3 HCL 2.9.12 ice 8260B VOAs 3 HCL

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

Additional Groundwater Quality Parameters
Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 2-9-2012

4Q 2011

WELL NO. MW-702 SAMPLED BY: F.Sosic

1	Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. us (Sy/cm)	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS 9/L	ORP MV	Color	Odor
1	101	20	VAC TRUCK	8.01	2.266	/	2.43	25.10	1.471	-118.3	Grey	Hild
11	03	25		8.01	2.250	/	2.52	24.88	1.466	-116.2	Light gray	Hild.
1/	05	30		8.00	2.271	/	2.37	25.50	1.443	-126.4	Light god	Mild
11	108	35		8.01	2.276	/	2.73	25.82	1.465	-118.3	Cloudy	Wild
1	111	40		7.98	2.276	/	2.00	25.68	1.460	-120.6	Clear	Mila
1	13	45		8.00	2.272	/	2.97	25.54	1.460	-119.8	Clear	Hild
11	15	50		7.99	2.295	/	4.16	26.10	1.462	-90.9	Clear	Hild
11:	20	55		8.00	2.208	1	3.82	25.83	1.418	-57.6	Clear	Hild
112	22	60		7.97	2.253		4.05	26.23	1.430	-68.0	Olive gray	Stronger
112	26	65		7.94	2.246	/	4.00	25.90	1.436	-59.8	Gray	Strong
11.	28	70		7.96	2.259	/	4.32	25.88	1.442	-70.7	dive draw	Strond
11	31	75		7.92	2.255	/	4.33	25.82	1.443	-60.2	Light grady	Stowa
113	34	80		7.93	2.254	1	4.75	25.74	1.445	-63.5	Cloudy	Strong
11	37	85		7.88	2.272	/	4.33	25.93	1.448	-66.4	Clear	Hild
11	140	90		7.89	2.279	/	4.26	26.00	1.458	-60.2	Clear	Hild
11	42	95		7.84	2.277	/	4.55	25.78	1.454	-70.1	Clear	Hild.
11	45	100	1	7.89	2.271	/	4.73	25.67	1.454	-60.7	Clear	Deild

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 2.14.2012 1Q2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 41		(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	100.23	(ft.)
HEIGHT OF WATER COLUMN	29,77	(ft.)
CASING VOLUME*	Hgt. x0.66 Gal./Ft. = 19.6482	(gal)
PURGE VOLUME	x3=58.9446	(gal)
PRODUCT THICKNESS		(ft.)

MW-703	Hospital'
Frane Sosic	
New 4" well	155/CH4!
ON:	,
(riser well)	
	esp (~65°F)
SAMPLING EQUIPME	NT:
(200')	
	New 4" well for well) DITIONS:

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. USs/cm)	Turbidity NTUs	DO mg/L	Temperature (F C)	9/L	ORP MV	Color	Odor
0930	5	VAC TRUCK	8.33	1.793	/	2.77	20.37	1.280	-13.1	Gowly	Slight
932	10		8.30	1.786	/	3.28	20.62	1.264	-28.3	Cloudy	Stight
	15	V	8.28	1.801	1	3.37	21.35	1.256	-34.4	Clear	Almost a

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	Air-assist line used for purge
1	2.14.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	11 702 00000
1	1007	ice	8015M - TPH-g	VOAs	3	HCL	LL.703_021412_01 @ 10:07

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

Additional Groundwater Quality Parameters Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 2-14-2012 4Q 2011

SAMPLED BY: F. Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F C	TDS S/L	ORP M.V	Color	Odor
0937	20	VAC TRUCK	8.22	1.819	/	3.96	22.01	1.254	-35.3	Clear	Slight
0940	25		8.21	1.831	/	3.70	22.20	1.257	-35.8	Clear	None
0942	36		8.25	1.826	/	3.46	21.62	1.263	-34.0	Clear	None
0946	35		8.25	1.827	/	4.42	21.87	1.261	-30.2	Clear	None
0949	40		8.20	1.832	/	3.83	21.92	1.268	-29.1	Clear	None
0952	45		8.23	1.820	/	3.91	21.44	1.268	-28.0	Clear	None
0956	50		8.20	1.845	/	4.34	22.00	1.271	-24.5	Clear	None
0959	55		8.15	1.855	/	4.15	22.3/	1.270	-25.2	Clear	None
1002	60	1	8.11	1.864	/	4.07	22.23	1.269	-26.3	Clear	None
-											
											<u> </u>
							-			<u> </u>	
							-				
				-						-	-
											-

PAGE 1 OF 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 2.14.2012 1Q2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 4		(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	102.11	(ft.)
HEIGHT OF WATER COLUMN	27, 89	(ft.)
CASING VOLUME*	Hgt. x0.66 Gal./Ft. = 18.4074	(gal)
PURGE VOLUME	x3=55.2222	(gal)
PRODUCT THICKNESS		(ft.)

MW-704 WELL NO.

Frane Sosic SAMPLED BY:

Well Notes:

New 4" well

WELL CONDITION:

VERY GOOD

WEATHER, CONDITIONS:

Clear Summy Vight Greeze 6-72

Hospital

PURGING AND SAMPLING EQUIPMENT:

YSI 556

Interface probe (200')

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS 9/L	ORP M V	Color	Odor
058	5	VAC TRUCK	8.04	2.215	/	3.73	21.36	1.554	-64.2	Trais, gery	Strone
100	10		8.00	2.232	/	3.29	21.97	1.542	-68.7	Dock gody	Stone
103	15	+	7.96	2.239	/	3.76	21.72	1553	-67.6	Olive aredu	Strong

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	Air-assist line used for purge	
1	2-14-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	1. 70/1 02/1/12 01	@ 10:45
1	1245	ice	8015M - TPH-g	VOAs	3	HCL	LL_704_021412_01	€ 12:45
2	2.14.12	ice	8260 B	VOAs	3	HCI		12.00
2	1300	ice	8015 H	WAs	3	HCI	LL_704_021412_02	e 13:00

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well)= 0.66 Gal./Foot

Additional Groundwater Quality Parameters Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 2-14-2012 4Q 2011 WELL NO. MW-704 SAMPLED BY: F. Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	9/L	orp wV	Color	Odor
1107	20	VAC TRUCK	7.90	2.274	/	3.96	22.46	1.550	-62.6	Olive gray	Strong
[[[]	25		7.88	2.237	/	3.40	12.58	1.524	-63.4	Vive grad	Strowa
1116	30		7.92	2.158	/	3.78	22.23	1.480	-57.8	Olive green	Strong
1124	35		7.90	2.090	/,	3.92	21.67	1.448	-48.6	Gray	Strong
1136	40		7.89	2.029	/,	4.00	20.77	1.433	-39.2	Light gray	Strong
1149	45		7.84	1.970	/	3.61	20.90	1.388	-38.4	Light growy	Strong
1202	50		7.83	1.854	/	3.87	16.90	1.418	-32.0	Cloudy	frond
216	55		7.80	1.827	/	4.20	16.78	1.409	-31.6	Clear	Strong
								_			
							-				
									+		
			-								
	-							-			
						-					

PAGE 1 OF 2

Interface probe (200')

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 2. 14.2012 1Q2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 4"		(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	103.39	(ft.)
HEIGHT OF WATER COLUMN	26.61	(ft.)
CASING VOLUME*	Hgt. x 0.66 Gal./Ft. = 17,5626	(gal)
PURGE VOLUME	x3 = 52.6878	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-705	_Hospital
SAMPLED BY:	Frane Sosic	
Well Notes:	New 4" well	
WELL CONDITION	ON:	
GREAT (riser well)	
WEATHER CON		1 1
Scattered	clouds /win	dy (~70°F)
	/	0
PURGING AND	SAMPLING EQUIP	MENT:
YSI 556		

Volume Flow (Gal./		Н	Sp.Cond.	Turbidity	DO	Temperature	TDS	ORP	Color	Odor
	,,,,,,,		W Js/cm)	NTUs	mg/L	(FC)	3/1	wV		
VACT	RUCK 8.5	54	2.178	/	5.07	22.63	1.482	-63.0	Olive	Store
	8.	57	2.243		2.96	23.37	1.503	-60.5	Cive gray	Stray
	8.	23	2.250	/	3.13	23.28	1.516	-63.1	Light grad	Stron
	VACT	1 0	VAC TRUCK 8.54 8.37 ▼ 8.23	837 2243	837 2243	8.37 2.243 / 2.96 8.23 2.250 / 3./3	8.37 2.243 2.96 23.37	8.37 2.243 / 2.96 23.37 1.503 8.73 2.250 / 3.13 23.28 1.516	8.37 2.243 2.96 23.37 1,503 -60.5	8.37 2.243 2.96 23.37 1.503 -60.5 Cive gray

No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	Air-assist used for purge
1	2.14.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	11 705_021412_01 @ 1420
1	1420	ice	8015M - TPH-g	VOAs	3	HCL	LL_705_021412_01 @ 1400
2	2.14.12	ice	8260 B	VOAs			- 11/20
2	1430	ice	8015 H	VOAs			LL_705_021412_02 @ 1430

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters
Page 2 of 2

Page

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 2-14-2012 4Q 2011

WELL NO. MW-705
SAMPLED BY: F. Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity MH NTUs	DO mg/L	Temperature (F/C)	g/L	ORP u.V	Color	Odor
1353	20 25	VAC TROCK	8.18	2.246		3.90	23.86 23.92 23.84	1.513	-61.Z -62.0	Cloudy	Strong
1358 1400 1403	36 35 40		8.14 8.09 8.11	2.287		3.81 3.43 3.88	23.71	1.520 1.524 1.523	-60.6 -59.5 -58.9	Clear	Strong
1405	45 50		8.07	2.304		3.75	24.00	1.521	- 58.7 - 57.6	Clear	Strong

PAGE 1 OF 2

PROJECT	NAME:
LICOSECI	141 /141

CENCO

PROJECT NO.:

1003-001-300

DATE: 2.14.2012 102012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 411		(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	100.00	(ft.)
HEIGHT OF WATER COLUMN	30.00	(ft.)
CASING VOLUME*	Hgt. x 066 Gal./Ft. = 19.8	(gal)
PURGE VOLUME	x3=59.4	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-706	_Hospital
SAMPLED BY:	Frane Sosic	
Well Notes:	New 4" well	
WELL CONDITION	ON:	
GREAT		
WEATHER CON Mostly SU	10,30	tud (~72°F)
PURGING AND	SAMPLING EQUIPM	MENT:
YSI 556		

					PURGE DA	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature	g/L	ORP ULV	Color	Odor
1494	5	VAC TRUCK	7.96	2.022	/	4.75	20.99	1.420	- 80.4	Clear	Stron
457	10	1	8.23	2.130		3.40	23.15	1.427	-77.7	Clear	Stroz
1501	15	4	8.23	2.135	/	3.69	23.77	1.422	-80.5	Clear	

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	Air-assist used for purge
1	2-14-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
1	1544	ice	8015M - TPH-g	VOAs	3	HCL	LL_706_02/4/2_01 @ 15:44
-							

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 2-14-2012 4Q 2011

WELL NO. MW-706 SAMPLED BY: F. Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity N/U NTUs	DO mg/L	Temperature (FC)	TDS	ORP MV	Color	Odor
1503		VAC TROCK	8.20	2.183	/	3.50	24.27	1.440	-80.7	Clear	Strong
1507	25		8.21	2.178	/	356	24.15	1.439	-80.3	Clear	Strong
1510	30		8.26	2.104		3.74	23.19	1.420	-68.1	Clear	Strong
1513	35		8.28	2.078		3.87	22.99	1.405	-61.1	Clear	Strong
1518	40		8.26	2.048		3.43	22.63	1.395	-54.5	Clear	Strong
1523	45		8.24	2.075		3.62	23.27	1.393	-52.1	Clear	Strong
1529	50		8.22	2.040	/	3.88	22.70	1.386	-51.2	Clear	Strong
1535	22		8.21	2.056		3.91	23.05	1.387	-49.0	Clear	Strong
1539	60	1	8.16	2.058		3.00	23.00	1.391	-52.7	Clear	Strong
	-	,									
							-				
									1		
	-								1	-	
-							-				
				-						-	
										-	
			l								

PAGE 1 OF 2

PROJ	FCT	NAN	AF.
LIVO		14501	AIT.

CENCO

PROJECT NO .:

1003-001-300

DATE: 2-1-2012 1Q2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER		(inches)
DEPTH OF WELL	(30.00)	(ft.)
DEPTH TO WATER	96.96	(ft.)
HEIGHT OF WATER COLUMN	33.04	(ft.)
CASING VOLUME*	Hgt. x0, 66 Gal./Ft. = 21, 8064	(gal)
PURGE VOLUME	x3=65.4192	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-707	Lakeland
SAMPLED BY:	Frane Sosic	

Well Notes: New 4" well Air-assist used to purge WELL CONDITION:

EXCELLENT

WEATHER CONDITIONS:

Clear sonny wormer PM (~76F)

PURGING AND SAMPLING EQUIPMENT:

YSI 556

Interface probe (200')

	PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Tyrbidity NTUs	DO mg/L	Temperature (F(C)	TDS g/L	ORP	Color	Odor	
1119	5	VACTRUCK	8.42	1.916	/	2.98	21.95	1.321	-1435	Light gray	Strong	
1121	10		8.37	1.943	/	3.50	23.00	1.309	+157.9	Clouded	Strong	
1123	15	+	8.30	1950	/	3.57	23.34	1.309	-158.6	Cloudy	Shou	

CH2M HILL (Matt)
01 @ 12:00
,

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

Additional Groundwater Quality Parameters

Page

2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 2-1-20/2 4Q 2011

WELL NO. MW-767 SAMPLED BY: F. Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity	DO mg/L	Temperature (F/C)	TDS 9/L	ORP	Calar	Odor
1125	20	VAC TRUCK	8.25	1.966	/	4.02	23.55	1.313	-150.2	Cloudy	Strong
1128	25		8.26	1.944	/	3.86	23.24	1.307	-153.9	Cloudly	Strong
1131	30		8.23	1.958	/	3.54	23.42	1.314	-155.7	Cloudy	Strong
1133	35		8.23	1.941	1	3.49	22.86	1.315	-158.3	Cloudy	Strong
1135	40		8.20	1.950	/	3.60	22.97	1.320	-160.9	Cloudy	Strong
1137	45		8.18	1.972	/	3.37	23.46	1.319	-157.4	Cloudy	Strang
1139	50		8.15	1.972	/	3.41	23.50	1.319	-158.Z	Cloudy	Strong
1141	22		8.17	1.954	/	3.20	23.40	1.310	-154.3	Cloudy	Strong
1143	60		8.18	1.941	/	2.95	23.27	1.305	-144.6	Cloudy	Strong
1145	65		8.19	1.935	1	3.10	23.13	1.304	-147.0	Almost clear	Strong
											/

PAGE 1 of 2

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE: 2-10-2012	1Q2012	

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER		(inches)
DEPTH OF WELL	130,00	(ft.)
DEPTH TO WATER	96.46	(ft.)
HEIGHT OF WATER COLUMN	33.54	(ft.)
CASING VOLUME*	Hgt. x0.66Gal./Ft. = 22.1364	(gal)
PURGE VOLUME	x3=66.4092	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-708	Hospital
SAMPLED BY:	Frane Sosic	
Well Notes:	May con	tain FPPH
WELL CONDI	TION:	
GREAT		
Clear/su		reeze (~73
PURGING AN	D SAMPLING EQUIP	MENT:
YSI S56		

	PURGE DATA										
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (FC)	TDS 9/L	ORP un U	Color	Odor
0955	5	VAC TRUCK	8.84	2.244	/	3.09	23,20	1.511	12.3	Light new	Strong
0958	10		8.65	2.276	/	2.91	24.00	1.506	-80.4	Clouded	Strong
1000	15	4	8.40	2.270	/	2.84	23.86	1.503	-123.4	Clondy	Strong

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	Air-line used for purge
1	2.10.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
	1030	ice	8015M - TPH-g	VOAs	3	HCL	LL_708_021012_01 @ 10:30

ADDITIONAL INFORMATION:

TOC = Top of well casing

^{*}Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 2-10-2012 4Q 2011

SAMPLED BY: F. Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (FC)	9/L	UN V	Color	Odor
1001	20	VACTRUCK	8.29	2.274	/	2.70	24.05	1.504	-/37,5	Cloudy	Strong
1003	25		8.31	2.208	/	2.92	23.63	1.473	-138.6	Grad	Strong
1005	30		8.21	2.272	/	2.48	23.90	1.509	-144.4	Youly gray	Strong
1007	35		8.16	2.267	/	2.65	24.15	1.500	-151.0	Yellowith good	Strong
1009	40		8.14	2.276	/	2.56	24.09	1.502	-153.2	Cloudy	Strong
1011	45		8.11	2.273	/	2.27	24.00	1.502	-153.4	Almost clear	Strong
1013	50		8.10	2.272	/	2.55	23.98	1.506	-155.8	Light grow	Strong
1015	55		8.13	2.249	/	2.76	23.63	1.502	-151.7	Clear	Strong
1017	60		8.11	2.255	/	2.59	23.72	1.501	-149.9	Clear	Strong
1020	65		8.10	2.257		3.18	23.60	1.504	-141.3	Clear	Strong
1022	70		8.09	2.260	/	2.75	23.69	1.506	-140.2	Clear	Strong
											-

PAGE 1 OF	2
-----------	---

Interface probe (200')

PROJECT NAME:	CENCO
	1002 001 7

PROJECT NO.: 1003-001-300

DATE: 2-10-2012 1Q2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER		(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	109.88	(ft.)
HEIGHT OF WATER COLUMN	20.12	(ft.)
CASING VOLUME*	Hgt. x0.66 Gal./Ft. = 13.2792	(gal)
PURGE VOLUME	x3 = 39.8376	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-709	Hospital
SAMPLED B	Y: Frane Sosic	
Well Notes:		
WELL COND	ITION:	
GREA-		
WEATHER C	ONDITIONS:	
Clear Si	onny / Dight bre	reze (75°F)
PURGING A	ND SAMPLING EQUIP	MENT:
YSI 556		

					PURGE I	DATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS 9/L	ORP M\/	Color	Odor
1107	5	VAC TRUCK	8.42	2.361	/	3.50	23.09	1.594	-82.1	Cloudy	Hild
1110	10		8.28	2.334	/	2.85	12.93	1.581	-73.9	Clear	Hild,
1112	15	*	8.27	2.302	/	2.73	22.32	1.576	-80.5	Clear	Mila

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	Purge Sowed down ~ 20-25 gallons
1	2.10.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
1	1200	ice	8015M - TPH-g	VOAs	3	HCL	LL_709_021012_01 @ 1200

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters
Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 2-10-2012

4Q 2011

WELL NO. MW-709 SAMPLED BY: F. Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C))	TDS 9/L	ORP M V	Color	Odor
1114		VAC TRUCK	8.23	2.251	/	2.34	22.27	1.540	-72.3	Light gray	Hild
17	25		8.17	2.273	-	2.94	22.41	1.556	-64.1	Of we grad	Hild
134	30		8.19	2.190	/	2.92	21.51	1.526	-61.2	Cloudy	Wild.
141	40	1	8.08	2.176	/	2.61	21.62	1.504	-57.1	Clear	Wild

PAGE 1 OF 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 2-1-2014 1Q2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 4"		(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	93.67	(ft.)
HEIGHT OF WATER COLUMN	36.33	(ft.)
CASING VOLUME*	Hgt. x 0.66 Gal./Ft. = 23.9778	(gal)
PURGE VOLUME	x3= 71.9334	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-710	Hospita
SAMPLED BY	: Frane Sosic	
Well Notes:	Air-assist us	red to purge
EXCEL		
WEATHER C		
Low fog,	lood AM (~50°	(F)
PURGING A	ND SAMPLING EQUIP	PMENT:
YSI 556		
Interface pro	obe (200')	

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS 9/L	ORP m V	Color	Odor
835	5	WAC TRUCK	9.48	1.629	/	3.36	19.60	1.176	46.2	Olive gray	Stight
836	10		9.08	1.697	1	3.10	21.21	1.185	-62.0	Same	same
837	15	•	8.92	1.691	1	4.53	21.10	1.188	-76,9	Same	Samo

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	SPLIT-SAMPLED WY CHZM HILL (Matt
1	2-1-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	LL_710_020112 01 @ 9:13
1	0913	ice	8015M - TPH-g	VOAs	3	HCL	LL TIOLOZOIZ OF E 1.13

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters

Page

2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 2-1-20/2 4Q 2011

WELL NO. MW-710 SAMPLED BY: F. Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS 9/L	ORP W/	Color	Odor
839	20	LAC TRUCK	8.89	1.692	/	2.63	21.21	1.186	-85.2	dive	Light
840	25		8.79	1.708	/	3.41	21.29	1./88	-88.8	Olive gray	-64-
842	30		8.71	1.702		3.78	21.30	1.191	-82.5	Light gray	-11-
847	35		8.67	1.669		3.70	20.44	1.189	-74.4	Light and	-/1-
850	40		8.61	1.702	1	3.21	21.34	1.189	-68.4	Light grey	-1-
851	45		8.51	1.723		3.39	21.79	1.193	-7Z.O	Light gray	-11-
853	50		8.51	1.724	-	3.11	21.82	1.191	-73.6	Light gray	-11-
855	55		8.49	1.727	/	3.03	21.91	1.193	-73,2	Light gray	-//-
857	60		8.45	1.727	/	3.92	21.89	1.195	-69.3	Cloudy	-11-
859	65		8.46	1.7/7	/	2.68	21.72	1.191	-67.9	Gray	-11_
901	70		8.45	1.726	/	2.87	21.78	1.196	-66.1	Olive gow	-/1-
903	75		8.47	1.714	/	3.45	21.52	1.193	-64.8	Olive	Slight
											0

PAGE 1 OF 2

PROJECT NAME:	CENCO
PROJECT NO.:	1003-001-300
DATE: 2.10-2012	1Q2012

TOP OF CASING ELEV.		(ft.)
WELL DIAMETER		(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	101.00	(ft.)
HEIGHT OF WATER COLUMN	29.00	(ft.)
CASING VOLUME*	Hgt. x 0.66 Gal./Ft. = 19.14	(gal)
PURGE VOLUME	x3=57.42	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-711	Hospital
SAMPLED B	Y: Frane Sosic	
Well Notes:		
WELL COND	ITION:	
GREAT		
Clears	CONDITIONS: Drug Light Gr ND SAMPLING EQUIP	PMENT:
YSI 556		
Interface pr	obe (200')	

	PURGE DATA												
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity	DO mg/L	Temperature (F/C)	TDS 9/L	ORP MV	Color	Odor		
1318	5	VAC TRUCK	8.44	1.784	/	3.77	23.82	1.186	1-41.3	Black	Strove		
1319	10		8.30	1.774	/	3.84	23.29	1.193	-95.6	Gray	Strong		
1321	15	*	8.12	1.779	/	2.79	22.58	1.210	-119.0	Oliveran	Stone		

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	Air-assist line used for purge
1	2.10.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
1	1500	ice	8015M - TPH-g	VOAs	3	HCL	LL_711_021012_01 @ 15:00
							-

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters
Page Zof Z

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 2-10-2012 4Q 2011 SAMPLED BY:

Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature	9/L	un V	Color	Odor
20	VACTRUCK	8.07	1.8/1	/	2.90	23.03	1.223			Strong.
25		8.05	1.805	/	2.56	22.97	1.218	-135.3	Light gray	Strong
30		8.00	1.812	/	2.37	22.45	1.231	- 140.0	Gaht ardy	Strong
35		8.03	1.811	/	3.03	21.92	1.247	-130.6	Brown-brown	Strong
40		8.00	1.847	/	2.28	22.31	1.279	-117.9	Vive geen	Hungent!
		12:	1.853	/		22.67	1.261	-122.6	Gray	Strong!
		-	1.00	/			1.265	-118.8	Olive	Strong.
		7.11	1 -	/		41.01		-116.5	Light gray	Strong,
60		8.04	1.835	/	3.45	23.10	1.239	-96.7	Olive	Strong
										0
								-		
			-							
						-				
-					-					
										-
						-	-	-	-	
				-					-	
-								-		
	20 25 30 35	20 VACTRUCK 25 30 35 40 45 50	20 VACTRUCK 8.07 25 8.05 30 8.00 35 8.03 40 8.00 45 8.03 50 7.95 55 7.99	20 VACTRUCK 8.07 1.811 25 8.05 1.805 30 8.00 1.812 35 8.03 1.811 40 8.00 1.847 45 8.03 1.853 50 7.95 1.882 55 7.99 1.878	20 VACTRUCK 8.07 1.811 / 25 8.05 1.805 / 30 8.00 1.812 / 35 8.03 1.811 / 40 8.00 1.847 / 45 8.03 1.853 / 50 7.95 1.882 / 55 7.99 1.878 /	20 VACTRUCK 8.07 1.811 / 2.90 25 8.05 1.805 / 2.56 30 8.00 1.812 / 2.37 35 8.03 1.811 / 3.03 40 8.00 1.847 / 2.28 45 8.03 1.853 / 2.82 50 7.95 1.882 / 2.43 55 7.99 1.878 / 3.11	20 VACTRUCK 8.07 1.811 / 2.90 23.03 25 8.05 1.805 / 2.56 22.97 30 8.00 1.812 / 2.37 22.45 35 8.03 1.811 / 3.03 21.92 40 8.00 1.847 / 2.28 22.31 45 8.03 1.853 / 2.82 22.67 50 7.95 1.882 / 2.43 23.30 55 7.99 1.878 / 3.11 23.37	20 VACTRUCK 8.07 1.811 / 2.90 23.03 1.223 25 8.05 1.805 / 2.56 22.97 1.218 30 8.00 1.812 / 2.37 22.45 1.231 35 8.03 1.811 / 3.03 21.92 1.247 40 8.00 1.847 / 2.28 22.31 1.279 45 8.03 1.853 / 2.82 22.67 1.261 50 7.95 1.882 / 2.43 23.30 1.265 55 7.99 1.878 / 3.11 23.37 1.258	20 VACTRUCK 8.07 1.8/1 / 2.90 23.03 1.223 -130.4 25 8.05 1.805 / 2.56 22.97 1.2/8 -135.3 30 8.00 1.8/2 / 2.37 22.45 1.231 -140.0 35 8.03 1.8/1 / 3.03 21.92 1.247 -130.6 40 8.00 1.847 / 2.28 22.3/1 1.279 -1/7.9 45 8.03 1.853 / 2.82 22.67 1.26/1 -122.6 50 7.95 1.882 / 2.43 23.30 1.265 -1/8.8 55 7.99 1.878 / 3.1/1 23.37 1.258 -1/6.5	20 VACTRUCK 8.07 1.811 / 2.90 23.03 1.223 -130.4 Light group 25 8.05 1.805 / 2.56 22.97 1.218 -135.3 Light group 30 8.00 1.812 / 2.37 22.45 1.231 -140.0 Light group 35 8.03 1.811 / 3.03 21.92 1.247 -130.6 Brown-aroun 40 8.00 1.847 / 2.28 22.31 1.279 -117.9 Vive group 45 8.03 1.853 / 2.82 22.67 1.261 -122.6 Group 50 7.95 1.882 / 2.43 23.30 1.265 -118.8 Olive 55 7.99 1.878 / 3.11 23.37 1.258 -116.5 Light group

PAGE 1 0=2

YSI 556

Interface probe (200')

PROJECT	NAME:
----------------	-------

CENCO

PROJECT NO .:

1003-001-300

DATE: 2-13-2012 1Q2012

	WELL INFORMATION	
TOP OF CASING ELEV.	16	(ft.)
WELL DIAMETER 4"		(inches)
DEPTH OF WELL		(ft.)
DEPTH TO WATER	98.70	(ft.)
HEIGHT OF WATER COLUMN	31.30	(ft.)
CASING VOLUME*	Hgt. x 0.66 Gal./Ft. = 20.658	(gal)
PURGE VOLUME	x3=61.974	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-712	Hospital
SAMPLED BY	Y: Frane Sosic	
Well Notes:		
WELL COND	ITION:	
GREAT		
WEATHER C	ONDITIONS:	
Cloudy	windy / 40% 0	choice of rain
59°P	01	Ų
PURGING A	ND SAMPLING EQUIP	MENT:

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	9/L	uV.	Color	Odor
928	5	VAC TRUCK	8.00	1.747	/	4.83	20.63	1.239	-155.4	Gray	Strong!
931	10	1	7.97	1.494	/	2.77	21.94	1.241	-169.3	Cloudy	Strong
3933	15	V	801	1792	/	227	22.15	1.729	-169.6	Light ard,	Strong

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES: Air-assist used for pure
1	2:13-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
1	1035	ice	8015M - TPH-g	VOAs	3	HCL	LL_712_021312_01 @ 10:35

ADDITIONAL INFORMATION:

TOC = Top of well casing

4" well = 0.66 Gal./Foot

^{*}Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 2-13-2012

4Q 2011

WELL NO. MW-712 SAMPLED BY: F. Sosic

	Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NM NTUs	DO mg/L	Temperature (F/C)	TDS 9/4	ORP WV	Color	Odor
Ē	0936	20	VAC TRUCK	8.00	1.793	/	2.01	22.00	1.230	-151.7	Gray	Strong
(0938	25		8.01	1,794	/	2.29	22.28	1.231	-165.3	Gray	Strong
	0940	30		8.03	1.770	/	2.85	21.76	1.226	-134.0	Gray	Strong
	0943	35		7.98	1.771	/	2.10	21.82	1.227	-129.4	Light gran	Strong
	0947	40		8.02	1.780	/	3.03	21.63	1.234	-124.6	Ofive and	Strong
	0951	45		8.04	1.750	/	3.72	21.37	1.222	-94.3	Of we green	Strong
	0955	50		7.94	1.770		3.86	22.03	1.220	-77.7	Olive dreen	Strong
0	1000	55		7.98	1.736		3.93	21.33	1.212	-76.1	Vive green	Strong
	1003	66		7.89	1.778	/	3.12	22.17	1.219	-82.5	Olive green	Strong
-	1008	65		7.88	1.779	/,	3.06	21.48	1.221	-94.0	Olive green	Strong
1	1011	70		7.93	1.738	/	3.40	21.10	1.220	-86.7	dive green	Strong
-	1016	75	-	7.90	1.770	/	3.88	21.96	1.219	-83.5	divegray	Strong
-									-			
+												
-												
ŀ												
-												
ŀ								-				
1												
Į					J	L						

PAGE 1 OF 2

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE: 2-13.2012	102012	

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER		(inches)
DEPTH OF WELL		(ft.)
DEPTH TO WATER	104.90	(ft.)
HEIGHT OF WATER COLUMN	25.10	(ft.)
CASING VOLUME*	Hgt. x0.66 Gal./Ft. = 16.566	(gal)
PURGE VOLUME	x3=49.698	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-713	Hospita
SAMPLED B	Y: Frane Sosic	
Well Notes:		
WELL COND	OITION:	
GREA	T	
	conditions: while of all	hence of rain
PURGING A	ND SAMPLING EQUI	PMENT:
YSI 556		

					PURGE [DATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP MV	Color	Odor
1050	5	VAC TRUCK	8.17	2.015	/	4.43	20.62	1.431	-61.2	Cloudy	Strong
1053	10		8.15	2.049	/	3.50	21.38	1.428	-69.3	Cloudy	Strong
1056	15	1	8.12	2.068	/	4.21	21.68	1435	-76.7	Clear	Stroub

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	Air-assist used for purge
1	2.13.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
1	1223	ice	8015M - TPH-g	VOAs	3	HCL	LL_713_021312_01 @ 12:23
		_	-				

ADDITIONAL INFORMATION:

TOC = Top of well casing

4" well = 0.66 Gal./Foot

^{*}Casing Volume = $r^2h(ft) \times 7.48 \text{ gal/ft.}^3$

Additional Groundwater Quality Parameters

Page

2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 2-13-2012 4Q 2011

WELL NO. MW-713

SAMPLED BY: F. Sosie

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	9/4	ORP ULV	Color	Odor
1058	20	VAC TRUCK	8.11	2.104	/	4.00	22.03	1.447	-80.0	Clear	Strong
1102	25		8.09	2.117	/	3.77	21.73	1.467	-78,7	Clear	Strong
1105	30		8.07	2.148	/	3.51	22.06	1.479	-79.6	Clear	Strong
1107	35		8.01	2.184	/	4.12	22.28	1.493	-87.0	Clear	Strong
1111	40		7.97	2.191	/	3.3/	22.46	1.497	-86.3	Clear	Strong
1114	45		8.02	2.154	/	3.99	21.69	1.497	-83.1	Clear	Strong
1118	50	-	7.97	2.188	/	3.65	22.00	1.501	-77.7	Clear	Strong!
			*							111111111111111111111111111111111111111	
								-			
										-	-

PAGE 1 OF 2

PROJECT	NAME:
PROJECT	NAME:

CENCO

PROJECT NO.:

1003-001-300

DATE: 2.13.2012 1Q2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER		(inches)
DEPTH OF WELL	135.00	(ft.)
DEPTH TO WATER	104.52	(ft.)
HEIGHT OF WATER COLUMN	30.48	(ft.)
CASING VOLUME*	Hgt. x0.66 Gal./Ft. = 20.1168	(gal)
PURGE VOLUME	x3 = 60,3504	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-714	Hospital
SAMPLED BY:	Frane Sosic	
Well Notes:		
WELL CONDIT	ION:	
GREAT		
WEATHER CO Light pain	rollions:	ly (258°F)
PURGING ANI	SAMPLING EQUI	PMENT:
YSI 556		
Interface prol	pe (200')	

	PURGE DATA										
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity	DO mg/L	Temperature (F/C)	g/L	ORP	Color	Odor
1305	5	LAC TRUCK	8.61	2.484	/	4.67	19.49	1.811	-73.3	Clear	None
1308	10		8.30	2.590	-/-	3.46	21.03	1.813	-81.7	Clear	None
1312	15	V	8.17	2.624	/	3.65	21.64	1.820	-94.5	Clear	None

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	Air-assist used for purge
1	2-13-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
1	1540	ice	8015M - TPH-g	VOAs	3	HCL	LL_714_021312_01 @ 15:40
2	2-13-12	ice	8260 B	VOAs	3	HCI	
2	1546	ice	8015 H	VoAs	3	HCI	LL_714_021312_02@15:46

ADDITIONAL INFORMATION:

TOC = Top of well casing

^{*}Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 2.13.2012 4Q 2011 WELL NO. SAMPLED BY:

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS 9/L	ORP	Color	Odor
1314	20	VAC TRUCK	8.15	2.629	/	4.00	21.88	1.820	-102.3	Clear	None
1317	25		8.16	2.595	/	3.52	21.23	1.817	-94.2	Clear	None
320	30		8.11	2.625	/	3.60	21.56	1.822	-91.7	Clear	None
323	35		8.09	2.635	/	3.50	21.88	1.819	-91.5	Clear	Non
327	40		8.10	2.615	/	3.59	21.66	1.816	-88.4	Clear	None
1331	45		8.11	2.561	/	3.97	20.60	1.817	-76.0	Clear	None
1333	50		8.10	2.598	/	4.14	21.23	1.820	-73.2	Clear	None
1337	55		8.07	2.616	/	4.20	21.59	1.819	-74.3	Clear	None
1340	60		8.05	2.6/8	/	4.32	21.51	1.823	-70.5	Clear	None
	-										

PAGE 1 OF 2

PROJECT NAME: CENCO

PROJECT NO.: 1003-001-300

DATE: 2-1-20/2 1Q2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 411		(inches)
DEPTH OF WELL	30.00	(ft.)
DEPTH TO WATER	76.06	(ft.)
HEIGHT OF WATER COLUMN	33.94	(ft.)
CASING VOLUME*	Hgt. x0.66 Gal./Ft. = 22.4004	(gal)
PURGE VOLUME	x3=67.2012	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO. MW-715 Hospital

SAMPLED BY: Frane Sosic

Well Notes: Air assist used to purge WELL CONDITION:

EXCELLENT

WEATHER CONDITIONS:

Low clouds food a 40°F

PURGING AND SAMPLING EQUIPMENT:

YSI 556

Interface probe (200')

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS 9/L	ORP	Color	Odor
1003	5	VAC TRUCK	8.59	1.566	/	3.42	19.92	1.124	-146.5	Cloudy	Strong
1005	10		8.47	1.640	1	3.16	22.00	1.127	-157.5	Cloudy	Strone
1006	15	-	8.43	1.666	/	3.05	21.97	1.149	-177.4	Clear	Show

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	SPLIT-SAMPLED W/ CH2M HILL (MA)
1	2-1-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	LL_715_020112_01 @ 10:44
1	1044	ice	8015M - TPH-g	VOAs	3	HCL	- LL 113_020112_01 & 10.44

ADDITIONAL INFORMATION:

TOC = Top of well casing

4" well = 0.66 Gal./Foot

^{*}Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 2-1-2012

4Q 2011

WELL NO. MW-715 SAMPLED BY: F. Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity	DO mg/L	Temperature (F/C)	TDS 9/L	ORP M V	Color	Odor
1009	20	VAC TRUCK	8.39	1.678	/	4.73	21.58	1.166	-166.7	Clear	Strong
1011	25		8.25	1.750	1	3.70	22.81	1.187	-162.0	Clear	Strong
1013	30		8.26	1.475	1	3.95	23.00	1.199	-/58./	Clear	Strong
1014	35		8.25	1.782	/	4. M	22.62	1.208	-152.3	Clear	Strong
1017	40		8.36	1.767	/	4.51	22.33	1.210	-154.2	Clear	Strong
1019	45		8.29	1.785	/	4.06	22.36	1.221	-156.0	Clear	Strong
1022	50		8.33	1.792	/	3.40	22.39	1.224	-168.5	Clear	Strong
1023	55		8.33	1.803	/	3.64	22.44	1.227	-168.2	Clear	Strong
1026	60		8.31	1.808	/	3.26	22.57	1.232	-153.4	Clear	Strong
1028	65		8.33	1.804	/	2.61	22.69	1.227	+172.1	Clive gray	
1030	70		8.32	1.791	/	2.87	22.04	1.234	-174.2	Olive	Strong

01 February 2012

Jeremy Squire Murex 2640 Walnut Ave. Unit F Tustin, CA 92780

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 01/30/12 16:46. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Wendy Hsiao For Daniel Chavez

Wordy Hsias

Project Manager

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/01/12 15:14

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_14A_013012_01	T120141-01	Water	01/30/12 09:36	01/30/12 16:46
LL_14B_013012_01	T120141-02	Water	01/30/12 12:20	01/30/12 16:46
LL_14C_013012_01	T120141-03	Water	01/30/12 16:00	01/30/12 16:46
LL_TB_013012	T120141-04	Water	01/30/12 00:00	01/30/12 16:46

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/01/12 15:14

LL_14A_013012_01 T120141-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

C6-C12 (GRO)	200	50	ug/l	1	2013119	01/31/12	01/31/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		99.3 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by E	PA Method 8260	В						
Bromobenzene	ND	1.0	ug/l	1	2012709	"	02/01/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	1.4	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	10	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/01/12 15:14

LL_14A_013012_01 T120141-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,2-Dichloropropane	ND	1.0	ug/l	1	2012709	01/31/12	02/01/12	EPA 8260E
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	2.5	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
1ethylene chloride	ND	1.0	"	"	"	"	"	"
Japhthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	5.0	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	3.2	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	1.1	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	1.5	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	38	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsias

Murex Project: Cenco
2640 Walnut Ave. Unit F Project Number: 1003-001-300 Reported:
Tustin CA, 92780 Project Manager: Jeremy Squire 02/01/12 15:14

LL_14A_013012_01 T120141-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA								
Tert-butyl alcohol	ND	10	ug/l	1	2012709	01/31/12	02/01/12	EPA 8260B
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"
Surrogate: 4-Bromofluorobenzene		104 %	83.5-	119	"	"	"	"
Surrogate: Dibromofluoromethane		109 %	81-1	36	"	"	"	"

88.8-117

98.1 %

SunStar Laboratories, Inc.

Surrogate: Toluene-d8

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/01/12 15:14

LL_14B_013012_01 T120141-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by FPA	8015C
Purgeable	Petroleum	пуштосатоонѕ	DVEPA	9015C

C6-C12 (GRO)	220	50	ug/l	1	2013119	01/31/12	01/31/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		99.9 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by EPA	Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2012709	"	02/01/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	**	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	3.1	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	55	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	12	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/01/12 15:14

LL_14B_013012_01 T120141-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,3-Dichloropropane	ND	1.0	ug/l	1	2012709	01/31/12	02/01/12	EPA 8260E
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
lexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
fethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	22	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	100	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/01/12 15:14

LL_14B_013012_01 T120141-02 (Water)

ı									
		Reporting							
ı	Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic	Compounds l	by EPA	Method 8260B

volutile of game compounds by Eli-	i micunou ozooi								
Di-isopropyl ether	ND	2.0	ug/l	1	2012709	01/31/12	02/01/12	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		107 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		96.5 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit F Project Number: 1003-001-300 Reported: Tustin CA, 92780 Project Manager: Jeremy Squire 02/01/12 15:14

LL_14C_013012_01 T120141-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Dungooblo	Dotnoloum	Hydrocarbons	by EDA	Q015C
Purgeable	Petroleum	nvurocarbons	DVEPA	90120

C6-C12 (GRO)	100	50	ug/l	1	2013119	01/31/12	01/31/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		97.5 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by EPA Meth	od 8260B							
Bromobenzene	ND	1.0	ug/l	1	2012709	"	02/01/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	2.2	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	5.3	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	11

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/01/12 15:14

LL_14C_013012_01 T120141-03 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,3-Dichloropropane	ND	1.0	ug/l	1	2012709	01/31/12	02/01/12	EPA 8260E
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Japhthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
`richloroethene	3.4	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsias

Murex Project: Cenco
2640 Walnut Ave. Unit F Project Number: 1003-001-300 Reported:
Tustin CA, 92780 Project Manager: Jeremy Squire 02/01/12 15:14

LL_14C_013012_01 T120141-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic	Compounds l	by EPA	Method 8260B

volutile of game compounds by Eli-	I MICCHIOG 02001								
Di-isopropyl ether	ND	2.0	ug/l	1	2012709	01/31/12	02/01/12	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	II .	
Surrogate: 4-Bromofluorobenzene		101 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		107 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		97.4 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/01/12 15:14

LL_TB_013012 T120141-04 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Bromobenzene	ND	1.0	ug/l	1	2012709	01/31/12	02/01/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/01/12 15:14

LL_TB_013012 T120141-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

is-1,3-Dichloropropene	ND	0.50	ug/l	1	2012709	01/31/12	02/01/12	EPA 8260B
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Vaphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
/inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
Coluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
Cert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Cert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsias

Murex Project: Cenco
2640 Walnut Ave. Unit F Project Number: 1003-001-300

2640 Walnut Ave. Unit F Project Number: 1003-001-300
Tustin CA, 92780 Project Manager: Jeremy Squire

Reported: 02/01/12 15:14

LL_TB_013012 T120141-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	2012709	01/31/12	02/01/12	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		102 %	83.5-119)	"	"	"	"	
Surrogate: Dibromofluoromethane		107 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		97.1 %	88.8-117	7	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/01/12 15:14

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2013119 - EPA 5030 GC										
Blank (2013119-BLK1)				Prepared	& Analyze	ed: 01/31/	12			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	101		"	100		101	72.6-146			
LCS (2013119-BS1)				Prepared	& Analyze					
C6-C12 (GRO)	5060	50	ug/l	5500		92.0	75-125			
Surrogate 4-Bromofluorobenzene	98.4		"	100		98.4	72.6-146			
Matrix Spike (2013119-MS1)	Sou	urce: T12014	1-01	Prepared	& Analyze	ed: 01/31/	12			
C6-C12 (GRO)	5060	50	ug/l	5500	201	88.4	65-135			
Surrogate 4-Bromofluorobenzene	99.8		"	100		99.8	72.6-146			
Matrix Spike Dup (2013119-MSD1)	Source: T120141-01			Prepared	& Analyze	ed: 01/31/	12			
C6-C12 (GRO)	5160	50	ug/l	5500	201	90.2	65-135	1.96	20	
Surrogate 4-Bromofluorobenzene	102		"	100		102	72.6-146			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/01/12 15:14

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 2012709 - EPA 5030 GCM	Batch	2012709	- EPA	5030	GCMS
------------------------------	-------	---------	-------	------	------

Blank (2012709-BLK1)				Prepared & Analyzed: 01/31/12
Bromobenzene	ND	1.0	ug/l	
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
n-Butylbenzene	ND	1.0	"	
sec-Butylbenzene	ND	1.0	"	
tert-Butylbenzene	ND	1.0	"	
Carbon tetrachloride	ND	0.50	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
2-Chlorotoluene	ND	1.0	"	
4-Chlorotoluene	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	
Dibromomethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
Dichlorodifluoromethane	ND	0.50	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	0.50	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,3-Dichloropropane	ND	1.0	"	
2,2-Dichloropropane	ND	1.0	"	
1,1-Dichloropropene	ND	1.0	"	
cis-1,3-Dichloropropene	ND	0.50	"	
trans-1,3-Dichloropropene	ND	0.50	"	
Hexachlorobutadiene	ND	1.0	"	
Isopropylbenzene	ND	1.0	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Batch 2012709 - EPA 5030 GCMS

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

Murex Project: Cenco

Result

ND

ND

ND

ND

8.20

8.45

7.91

2.0

2.0

1.0

5.0

8.00

8.00

8.00

2640 Walnut Ave. Unit F Project Number: 1003-001-300 Reported: Tustin CA, 92780 Project Manager: Jeremy Squire 02/01/12 15:14

Reporting

Limit

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

%REC

Limits

RPD

Blank (2012709-BLK1)				Prepared & Analyzed: 01/31/12
p-Isopropyltoluene	ND	1.0	ug/l	
Methylene chloride	ND	1.0	"	
Naphthalene	ND	1.0	"	
n-Propylbenzene	ND	1.0	"	
Styrene	ND	1.0	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	
Tetrachloroethene	ND	1.0	"	
1,2,3-Trichlorobenzene	ND	1.0	"	
1,2,4-Trichlorobenzene	ND	1.0	"	
1,1,2-Trichloroethane	ND	1.0	"	
1,1,1-Trichloroethane	ND	1.0	"	
Trichloroethene	ND	1.0	"	
Trichlorofluoromethane	ND	1.0	"	
1,2,3-Trichloropropane	ND	1.0	"	
1,3,5-Trimethylbenzene	ND	1.0	"	
1,2,4-Trimethylbenzene	ND	1.0	"	
Vinyl chloride	ND	1.0	"	
Benzene	ND	0.50	"	
Toluene	ND	0.50	"	
Ethylbenzene	ND	0.50	"	
m,p-Xylene	ND	1.0	"	
o-Xylene	ND	0.50	"	
Tert-amyl methyl ether	ND	2.0	"	
Tert-butyl alcohol	ND	10	"	

SunStar Laboratories, Inc.

1,1,2-trichloro-1,2,2-trifluoroethane (CFC

Surrogate 4-Bromofluorobenzene

Surrogate Dibromofluoromethane

Di-isopropyl ether

113)

Ethyl tert-butyl ether

Methyl tert-butyl ether

Surrogate Toluene-d8

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

83.5-119

81-136

88.8-117

102

106

98.9

evenly flsia

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/01/12 15:14

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2012709 - EPA 5030 GCMS										
LCS (2012709-BS1)				Prepared:	01/31/12	Analyzed	1: 02/01/12			
Chlorobenzene	20.8	1.0	ug/l	20.0		104	75-125			
1,1-Dichloroethene	20.5	1.0	"	20.0		103	75-125			
Trichloroethene	22.8	1.0	"	20.0		114	75-125			
Benzene	22.1	0.50	"	20.0		110	75-125			
Toluene	19.6	0.50	"	20.0		98.0	75-125			
Surrogate 4-Bromofluorobenzene	7.56		"	8.00		94.5	83.5-119			
Surrogate Dibromofluoromethane	8.88		"	8.00		111	81-136			
Surrogate Toluene-d8	7.50		"	8.00		93.8	88.8-117			
LCS Dup (2012709-BSD1)				Prepared:	01/31/12	Analyzed	1: 02/01/12			
Chlorobenzene	22.3	1.0	ug/l	20.0		111	75-125	6.97	20	
1,1-Dichloroethene	21.4	1.0	"	20.0		107	75-125	4.34	20	
Trichloroethene	24.5	1.0	"	20.0		123	75-125	7.19	20	
Benzene	23.2	0.50	"	20.0		116	75-125	4.82	20	
Toluene	21.5	0.50	"	20.0		107	75-125	9.15	20	
Surrogate 4-Bromofluorobenzene	7.45		"	8.00		93.1	83.5-119			
Surrogate Dibromofluoromethane	8.99		"	8.00		112	81-136			
Surrogate Toluene-d8	7.56		"	8.00		94.5	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/01/12 15:14

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Chain of Custody Record

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

	Client: Murex Environmental, Inc.						Da	ite:		<u>5</u> C)-2	0/:	<u></u>		Pag	ge:OF	
	Address: 2640 Walnut Ave, Unit F						Pro	oject N	lame:		С	ENC	0				
-	Phone: <u>(714)</u> 508-0800		Fax: <u>(714</u>)	508-0880			Collector: Frane Sosic							Client Project #: 1003-001-300			
	Project Manager: Jeremy Squire (714) 6	<u> 604-5836</u>					Ва	tch #:	h#: <u>T120141</u>						EDF	: #:	
ſ				T				ТТ				\top	Τ-	1			
					-					-		4					
01 02 03 04	Sample ID LL_14A_013\12_01 LL_14B_013\12_01 LL_14C_013\012_01 LL_TB_013\012	Date Sampled	Time 936 1220 1600	Sample Type GW GW GW Under	XXTPHg (8015 M)	X									NO DO Total # of containers	Comments/Preservative	Laboratory ID #
		· · · · · · · · · · · · · · · · · · ·				-		++		-	-	+	+-				
							+		_			+	\top				+
					إبلا		Щ.	للل		<u> </u>	بلب		_		L		
	Relinquished by (signature)	Date / Ti		Received	y: (si	1		161	16 Tot	al # o	f contai	ners		23		Notes	
	AR F. Spic 1:3		1646	Ifol			1/3	112	Ch	ain of	Custod	y sea	ls	کم ا			Ì
	Relinquished by: (signature)	Date / Ti	ime	Received b	y: (si	gnat D	ate / 1	Γime			act? Y/N	N/NA		~	A_	1	
	Relinquished by: (signature)	Date / Ti	ime	Received b	y: (si	gnat D	ate /	Гime		dition	d good n/cold			Y	<i>'</i>	3.0	
									Tu	n <u>a</u> rc	ound ti	me:					
	Sample disposal Instructions: Disposal @ \$2.00	each	Return to	client		Pickup)										

SAMPLE RECEIVING REVIEW SHEET

BATCH# <u>7/20/</u> 4	/			× .		
Client Name:	ENV. P	roject:	CENCO			
Received by:	AN I	Date/Time Rece	ived:	<i> -30</i>	-12/10	6.46
Delivered by :	SunStar Courier GSO	FedEx [Other			A
Total number of coolers re	ceived Temp cr	iteria = 6°C >	0°С (по	<u>frozen</u>	containers)
Temperature: cooler #1 _3	.2 °C +/- the CF (-0.2°C) =	3.0°C correcte	d temperan	ıre		
cooler #2	°C +/- the CF (- 0.2°C) = _	°C correcte	d tempera	ure		
cooler #3	°C +/- the CF (- 0.2°C) =	°C correcte	d tempera	ure		
Samples outside temp. but	received on ice, w/in 6 hours of fina	ıl sampling.	⊠Yes	□Ne	•*	A
Custody Seals Intact on Co			∐Yes	□N	•* ≥ N/.	A
Sample Containers Intact			∑ Yes	□N)*	
Sample labels match COC	ID's	W	∑ Yes	□N)*	
Total number of container	s received match COC		∑Yes	□N)*	
Proper containers received	for analyses requested on COC		¥Yes	□N)*	
Proper preservative indica	ted on COC/containers for analyses	requested	₹Yes	□N	o* □N/	A
Complete shipment receiv preservatives and within n	ed in good condition with correct tenethod specified holding times.	mperatures, cor	itainers,	labels, v	olumes	
* Complete Non-Conforman	ce Receiving Sheet if checked Co	ooler/Sample Rev	view - Ini	ials and	date <u>S2</u>	<u>- /-3/-1</u> 2
Comments:						

03 February 2012

Jeremy Squire Murex 2640 Walnut Ave. Unit F Tustin, CA 92780

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 01/31/12 15:51. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Wendy Hsiao For Daniel Chavez

Wordy Hsias

Project Manager

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/03/12 11:10

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_15C_013112_01	T120150-01	Water	01/31/12 10:57	01/31/12 15:51
LL_107A_013112_01	T120150-02	Water	01/31/12 13:45	01/31/12 15:51
LL_503B_013112_01	T120150-03	Water	01/31/12 15:00	01/31/12 15:51
LL_503B_013112_02	T120150-04	Water	01/31/12 15:10	01/31/12 15:51
LL_TB_013112	T120150-05	Water	01/31/12 00:00	01/31/12 15:51

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/03/12 11:10

LL_15C_013112_01 T120150-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

C6-C12 (GRO)	53	50	ug/l	1	2020115	02/01/12	02/01/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		99.1 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by E	PA Method 8260	В						
Bromobenzene	ND	1.0	ug/l	1	2020114	02/01/12	02/01/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	1.5	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	5.8	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/03/12 11:10

LL_15C_013112_01 T120150-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

2-Dichloropropane	ND	1.0	ug/l	1	2020114	02/01/12	02/01/12	EPA 8260E
3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1-Dichloropropene	ND	1.0	"	"	"	"	"	"
s-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	ND	1.0	"	"	"	"	"	"
Isopropyltoluene	ND	1.0	"	"	"	"	"	"
lethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
Propylbenzene	ND	1.0	"	"	"	"	"	"
ryrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	4.9	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
,p-Xylene	ND	1.0	"	"	"	"	"	"
Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsias

Tustin CA, 92780

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Murex Project: Cenco
2640 Walnut Ave. Unit F Project Number: 1003-001

Project Number: 1003-001-300
Project Manager: Jeremy Squire

Reported: 02/03/12 11:10

LL_15C_013112_01 T120150-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

Total organic compounds of 2211	111001100 02002								
Tert-butyl alcohol	10	10	ug/l	1	2020114	02/01/12	02/01/12	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		106 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		95.8 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		102 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

02/01/12 EPA 8015C

Murex Project: Cenco

500

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/03/12 11:10

LL_107A_013112_01 T120150-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

2020115 02/01/12

50

Purgeable Petroleum Hydrocarbons by EPA 8015C

C6-C12 (GRO)

					===0110				
Surrogate: 4-Bromofluorobenzene		97.8 %	72.6-	146	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	2020114	02/01/12	02/01/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	2.6	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	7.8	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	2.6	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsia

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/03/12 11:10

LL_107A_013112_01 T120150-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,3-Dichloropropane	ND	1.0	ug/l	1	2020114	02/01/12	02/01/12	EPA 8260E
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	15	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
lethylene chloride	ND	1.0	"	"	"	"	"	"
Iaphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	9.7	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	3.6	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	0.97	0.50	"	"	"	"	"	"
oluene	0.54	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsias

Murex Project: Cenco

2640 Walnut Ave. Unit F Project Number: 1003-001-300
Tustin CA, 92780 Project Manager: Jeremy Squire

Reported: 02/03/12 11:10

LL_107A_013112_01 T120150-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

Di-isopropyl ether	ND	2.0	ug/l	1	2020114	02/01/12	02/01/12	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane	ND	5.0	"	"	"	"	"	"	
(CFC 113)									
Surrogate: 4-Bromofluorobenzene		106 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		97.2 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		100 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit F Project Number: 1003-001-300 Reported: Tustin CA, 92780 Project Manager: Jeremy Squire 02/03/12 11:10

LL_503B_013112_01 T120150-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Durgoshla	Detroloum	Hydrocarbons	by FDA	2015C
Purgeable	Petroleum	пуагосагронѕ	DVEPA	のひょうし

C6-C12 (GRO)	5400	50	ug/l	1	2020115	02/01/12	02/01/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		99.1 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by EPA	Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2020114	02/01/12	02/01/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	6.2	1.0	"	"	"	"	"	"
sec-Butylbenzene	6.1	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	2.0	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	3.3	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/03/12 11:10

LL_503B_013112_01 T120150-03 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,3-Dichloropropane	ND	1.0	ug/l	1	2020114	02/01/12	02/01/12	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	14	1.0	"	"	"	"	"	"
p-Isopropyltoluene	1.3	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	150	5.0	"	5	"	"	"	"
n-Propylbenzene	34	1.0	"	1	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	57	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	300	5.0	"	5	"	"	"	"
Vinyl chloride	ND	1.0	"	1	"	"	"	"
Benzene	250	2.5	"	5	"	"	"	"
Toluene	120	2.5	"	"	"	"	"	"
Ethylbenzene	270	2.5	"	"	"	"	"	"
m,p-Xylene	580	5.0	"	"	"	"	"	"
o-Xylene	290	2.5	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	1	"	"	"	"
Tert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsias

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/03/12 11:10

LL_503B_013112_01 T120150-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

, saturate of games of saturation and and and and and and and and and an									
Ethyl tert-butyl ether	ND	2.0	ug/l	1	2020114	02/01/12	02/01/12	EPA 8260B	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		103 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		99.0 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		100 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit F Project Number: 1003-001-300 Reported: Tustin CA, 92780 Project Manager: Jeremy Squire 02/03/12 11:10

LL_503B_013112_02 T120150-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable Petroleum Hydrocarbons by EPA 8015C

C6-C12 (GRO)	5200	50	ug/l	1	2020115	02/01/12	02/01/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		99.2 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by EP	Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2020114	02/01/12	02/01/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	5.9	1.0	"	"	"	"	"	"
sec-Butylbenzene	5.5	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	2.1	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	3.5	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/03/12 11:10

LL_503B_013112_02 T120150-04 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,3-Dichloropropane	ND	1.0	ug/l	1	2020114	02/01/12	02/01/12	EPA 8260B
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	13	1.0	"	"	"	"	"	"
-Isopropyltoluene	1.2	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	170	5.0	"	5	"	"	"	"
-Propylbenzene	32	1.0	"	1	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	55	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	340	5.0	"	5	"	"	"	"
/inyl chloride	ND	1.0	"	1	"	"	"	"
Benzene	280	2.5	"	5	"	"	"	"
Toluene	120	2.5	"	"	"	"	"	"
Ethylbenzene	300	2.5	"	"	"	"	"	"
n,p-Xylene	650	5.0	"	"	"	"	"	"
-Xylene	330	2.5	"	"	"	"	"	"
Cert-amyl methyl ether	ND	2.0	"	1	"	"	"	"
Cert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsias

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/03/12 11:10

LL_503B_013112_02 T120150-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	Volatile Organic	Compounds by	y EPA Method 8260B
--	-------------------------	--------------	--------------------

Ethyl tert-butyl ether	ND	2.0	ug/l	1	2020114	02/01/12	02/01/12	EPA 8260B	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		102 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		99.2 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/03/12 11:10

LL_TB_013112 T120150-05 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

romobenzene	ND	1.0	ug/l	1	2020114	02/01/12	02/01/12	EPA 8260B
romochloromethane	ND	1.0	"	"	"	"	"	"
romodichloromethane	ND	1.0	"	"	"	"	"	"
romoform	ND	1.0	"	"	"	"	"	"
romomethane	ND	1.0	"	"	"	"	"	"
-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
arbon tetrachloride	ND	0.50	"	"	"	"	"	"
hlorobenzene	ND	1.0	"	"	"	"	"	"
hloroethane	ND	1.0	"	"	"	"	"	"
hloroform	ND	1.0	"	"	"	"	"	"
hloromethane	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
bibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
bibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
richlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
ans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsias

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/03/12 11:10

LL_TB_013112 T120150-05 (Water)

	Re	porting							
Analyte	esult	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

is-1,3-Dichloropropene	ND	0.50	ug/l	1	2020114	02/01/12	02/01/12	EPA 8260E
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
ı,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
thyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsias

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/03/12 11:10

LL_TB_013112 T120150-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	2020114	02/01/12	02/01/12	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		104 %	83.5-119	9	"	"	"	"	
Surrogate: Dibromofluoromethane		98.1 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		98.6 %	88.8-117	7	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/03/12 11:10

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2020115 - EPA 5030 GC										
Blank (2020115-BLK1)				Prepared	& Analyze	ed: 02/01/	12			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	92.2		"	100		92.2	72.6-146			
LCS (2020115-BS1)				Prepared	& Analyze	ed: 02/01/	12			
C6-C12 (GRO)	5160	50	ug/l	5500	·	93.8	75-125			
Surrogate 4-Bromofluorobenzene	104		"	100		104	72.6-146			
Matrix Spike (2020115-MS1)	Sou	urce: T12015	0-02	Prepared	& Analyze	ed: 02/01/	12			
C6-C12 (GRO)	5790	50	ug/l	5500	498	96.3	65-135			
Surrogate 4-Bromofluorobenzene	105		"	100		105	72.6-146			
Matrix Spike Dup (2020115-MSD1)	Sou	urce: T12015	0-02	Prepared	& Analyze	ed: 02/01/	12			
C6-C12 (GRO)	5900	50	ug/l	5500	498	98.1	65-135	1.77	20	
Surrogate 4-Bromofluorobenzene	101		"	100		101	72.6-146			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/03/12 11:10

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 2020114 - EPA 5030 GCMS

Blank (2020114-BLK1)				Prepared & Analyzed: 02/01/12
Bromobenzene	ND	1.0	ug/l	
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
n-Butylbenzene	ND	1.0	"	
sec-Butylbenzene	ND	1.0	"	
tert-Butylbenzene	ND	1.0	"	
Carbon tetrachloride	ND	0.50	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
2-Chlorotoluene	ND	1.0	"	
4-Chlorotoluene	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	
Dibromomethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
Dichlorodifluoromethane	ND	0.50	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	0.50	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,3-Dichloropropane	ND	1.0	"	
2,2-Dichloropropane	ND	1.0	"	
1,1-Dichloropropene	ND	1.0	"	
cis-1,3-Dichloropropene	ND	0.50	"	
trans-1,3-Dichloropropene	ND	0.50	"	
Hexachlorobutadiene	ND	1.0	"	
Isopropylbenzene	ND	1.0	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/03/12 11:10

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (2020114-BLK1)				Prepared & An	nalyzed: 02/01	/12
p-Isopropyltoluene	ND	1.0	ug/l			
Methylene chloride	ND	1.0	"			
Naphthalene	ND	1.0	"			
n-Propylbenzene	ND	1.0	"			
Styrene	ND	1.0	"			
1,1,2,2-Tetrachloroethane	ND	1.0	"			
1,1,1,2-Tetrachloroethane	ND	1.0	"			
Tetrachloroethene	ND	1.0	"			
1,2,3-Trichlorobenzene	ND	1.0	"			
1,2,4-Trichlorobenzene	ND	1.0	"			
1,1,2-Trichloroethane	ND	1.0	"			
1,1,1-Trichloroethane	ND	1.0	"			
Trichloroethene	ND	1.0	"			
Trichlorofluoromethane	ND	1.0	"			
1,2,3-Trichloropropane	ND	1.0	"			
1,3,5-Trimethylbenzene	ND	1.0	"			
,2,4-Trimethylbenzene	ND	1.0	"			
Vinyl chloride	ND	1.0	"			
Benzene	ND	0.50	"			
Toluene	ND	0.50	"			
Ethylbenzene	ND	0.50	"			
m,p-Xylene	ND	1.0	"			
o-Xylene	ND	0.50	"			
Tert-amyl methyl ether	ND	2.0	"			
Tert-butyl alcohol	ND	10	"			
Di-isopropyl ether	ND	2.0	"			
Ethyl tert-butyl ether	ND	2.0	"			
Methyl tert-butyl ether	ND	1.0	"			
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"			
Surrogate 4-Bromofluorobenzene	7.91		"	8.00	98.9	83.5-119
Surrogate Dibromofluoromethane	6.62		"	8.00	82.8	81-136
Surrogate Toluene-d8	7.92		"	8.00	99.0	88.8-117

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/03/12 11:10

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

	D 1	Reporting	** **	Spike	Source	0/DES	%REC	DDD	RPD	37.
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2020114 - EPA 5030 GCMS										
LCS (2020114-BS1)				Prepared	& Analyz	ed: 02/01/	12			
Chlorobenzene	22.3	1.0	ug/l	20.0		111	75-125			
1,1-Dichloroethene	21.3	1.0	"	20.0		107	75-125			
Trichloroethene	21.5	1.0	"	20.0		108	75-125			
Benzene	22.2	0.50	"	20.0		111	75-125			
Toluene	22.0	0.50	"	20.0		110	75-125			
Surrogate 4-Bromofluorobenzene	7.81		"	8.00		97.6	83.5-119			
Surrogate Dibromofluoromethane	8.63		"	8.00		108	81-136			
Surrogate Toluene-d8	7.74		"	8.00		96.8	88.8-117			
Matrix Spike (2020114-MS1)	Sou	ırce: T12015	0-01	Prepared	& Analyz	ed: 02/01/	12			
Chlorobenzene	23.9	1.0	ug/l	20.0	ND	120	75-125			
1,1-Dichloroethene	22.3	1.0	"	20.0	1.46	104	75-125			
Trichloroethene	25.3	1.0	"	20.0	4.86	102	75-125			
Benzene	23.0	0.50	"	20.0	0.250	114	75-125			
Toluene	22.8	0.50	"	20.0	ND	114	75-125			
Surrogate 4-Bromofluorobenzene	8.36		"	8.00		104	83.5-119			
Surrogate Dibromofluoromethane	8.74		"	8.00		109	81-136			
Surrogate Toluene-d8	7.77		"	8.00		97.1	88.8-117			
Matrix Spike Dup (2020114-MSD1)	Sou	ırce: T12015	0-01	Prepared	& Analyz	ed: 02/01/	12			
Chlorobenzene	22.5	1.0	ug/l	20.0	ND	112	75-125	6.12	20	
1,1-Dichloroethene	21.5	1.0	"	20.0	1.46	100	75-125	3.74	20	
Trichloroethene	25.1	1.0	"	20.0	4.86	101	75-125	0.635	20	
Benzene	22.6	0.50	"	20.0	0.250	112	75-125	1.88	20	
Toluene	22.4	0.50	"	20.0	ND	112	75-125	1.91	20	
Surrogate 4-Bromofluorobenzene	7.87		"	8.00		98.4	83.5-119			
Surrogate Dibromofluoromethane	7.84		"	8.00		98.0	81-136			
Surrogate Toluene-d8	7.74		"	8.00		96.8	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/03/12 11:10

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Chain of Custody Record

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Client: Murex Environmental, Inc.				1-31-20		Page	e: / OF/	
Address: <u>2640 Walnut Ave, Unit F</u> Phone: <u>(714) 508-0800</u> Project Manager: <u>Jeremy Squire</u> (714)		14) 508-0880	Project Na Collector: Batch #:	Frane Sosic	CENCO	Clien	t Project #: 1003-001-300 #:	
	<u> </u>							
Sample ID LL_1SC_0 3 2_0 LL_107A_0 3 2_0 LL_S03B_0 3 2_0 LL_S03B_0 3 2_02 LL_T13_0 3 2	Date Sampled Time 1-31-2012 105 1345 150	F GW XX 5 GW XX D GW XX				N N N N Total # of containers	Comments/Preservative	Laboratory ID #
Relinquished by: (signature)	Date / Time	Received by: (signat D)ate / Time (5 ³ 5)	Total # of conta			Notes	
Relinquished by: (signature) Relinquished by: (signature)	Date / Time	Received by: (signat D	Date / Time	Seals intact? Y Received good condition/cold	/N/QAS	8.6	·	
Sample disposal Instructions: Disposal @ \$2.0	0 each Return	to client Picku	p	Turn around	ime:			-

SAMPLE RECEIVING REVIEW SHEET

BATCH# <u></u>	50				
Client Name: Mure	ENV.	Project:	CENCO		
Received by:	Sarry	Date/Time Rec	ceived:	1-31-	12 / 15:51
Delivered by : Clien	nt SunStar Courier 🔲	GSO FedEx	Other		
Total number of coolers r	eceivedO Te	emp criteria = 6°C	> 0°C (no	frozen co	ontainers)
Temperature: cooler #1 _	8.8 °C +/- the CF (- 0.2°C)	= <u>8.6</u> °C correc	ted temperari	ure	
cooler #2 _	°C +/- the CF (- 0.2°C)	=°C согтес	ted tempera	ure	
cooler #3	°C +/- the CF (- 0.2°C)	=°C согтес	ted temperat	ure	
Samples outside temp. bu	t received on ice, w/in 6 hours	of final sampling.	∑Yes	□No*	□N/A
Custody Seals Intact on C	ooler/Sample		□Yes	□No*	N/A
Sample Containers Intact			₹Yes	□No*	
Sample labels match COC	Z ID's		Yes	□No*	
Total number of container	rs received match COC		∑Yes	□No*	
Proper containers received	d for analyses requested on CO	OC	⊠Yes	□No*	
Proper preservative indica	ated on COC/containers for ana	llyses requested	Yes	□No*	□N/A
	red in good condition with corr nethod specified holding times		1	abels, vol	umes
* Complete Non-Conforman	ce Receiving Sheet if checked	Cooler/Sample Re	view - Initia	als and dat	e 81 1-31-1
Comments:			1960		
- And the state of					

06 February 2012

Jeremy Squire Murex 2640 Walnut Ave. Unit F Tustin, CA 92780

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 02/01/12 15:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Wendy Hsiao For Daniel Chavez

Wordy Hsias

Project Manager

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/06/12 16:50

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_710_020112_01	T120159-01	Water	02/01/12 09:13	02/01/12 15:00
LL_715_020112_01	T120159-02	Water	02/01/12 10:44	02/01/12 15:00
LL_707_020112_01	T120159-03	Water	02/01/12 12:00	02/01/12 15:00
LL_701_020112_01	T120159-04	Water	02/01/12 14:00	02/01/12 15:00
LL_TB_020112	T120159-05	Water	02/01/12 14:00	02/01/12 15:00

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/06/12 16:50

LL_710_020112_01 T120159-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

C6-C12 (GRO)	170	50	ug/l	1	2020301	02/03/12	02/06/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		86.6 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by El	PA Method 8260	В						
Bromobenzene	ND	1.0	ug/l	1	2020302	02/03/12	02/03/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	6.0	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	71	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

cis-1,2-Dichloroethene

trans-1,2-Dichloroethene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Plsia

23

2.1

1.0

1.0

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/06/12 16:50

LL_710_020112_01 T120159-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

2-Dichloropropane	ND	1.0	ug/l	1	2020302	02/03/12	02/03/12	EPA 8260E
3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1-Dichloropropene	ND	1.0	"	"	"	"	"	"
s-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Iethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	66	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	110	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
ı,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported:

02/06/12 16:50

Murex Project: Cenco
2640 Walnut Ave. Unit F Project Number: 1003-001-300
Tustin CA, 92780 Project Manager: Jeremy Squire

LL_710_020112_01 T120159-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA	Method 8260B								
Tert-butyl alcohol	ND	10	ug/l	1	2020302	02/03/12	02/03/12	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	11	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.5 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		91.8 %	81-1	36	"	"	"	"	

88.8-117

99.1 %

SunStar Laboratories, Inc.

Surrogate: Toluene-d8

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

860

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/06/12 16:50

LL_715_020112_01 T120159-02 (Water)

Reporting

Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Notes

SunStar Laboratories, Inc.

ug/l

2020301

02/03/12

02/06/12

EPA 8015C

50

Purgeable	Petroleum H	lydrocarbons	by	EPA 8015C

C6-C12 (GRO)

CU-C12 (GRO)	000	50	ug/1	1	2020301	02/03/12	02/00/12	LI A 0015C	
Surrogate: 4-Bromofluorobenzene		88.2 %	72.6-	146	"	"	"	"	
Volatile Organic Compounds by E	CPA Method 8260E	3							
Bromobenzene	ND	1.0	ug/l	1	2020302	02/03/12	02/03/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	1.3	1.0	"	"	"	"	"	"	
sec-Butylbenzene	1.8	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/06/12 16:50

LL_715_020112_01 T120159-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,3-Dichloropropane	ND	1.0	ug/l	1	2020302	02/03/12	02/03/12	EPA 8260E
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	3.5	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
1ethylene chloride	ND	1.0	"	"	"	"	"	"
Japhthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
Senzene	270	5.0	"	10	"	"	"	"
oluene	2.6	0.50	"	1	"	"	"	"
thylbenzene	1.7	0.50	"	"	"	"	"	"
ı,p-Xylene	5.6	1.0	"	"	"	"	"	"
-Xylene	1.1	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsias

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/06/12 16:50

LL_715_020112_01 T120159-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic	Compounds l	by EPA	Method 8260B

Di-isopropyl ether	ND	2.0	ug/l	1	2020302	02/03/12	02/03/12	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		93.2 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		101 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit F Project Number: 1003-001-300 Reported: Tustin CA, 92780 Project Manager: Jeremy Squire 02/06/12 16:50

LL_707_020112_01 T120159-03 (Water)

Reporting Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Note

SunStar Laboratories, Inc.

C6-C12 (GRO)	10000	50	ug/l	1	2020301	02/03/12	02/06/12	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		98.8 %	72.6-	146	"	"	"	"	
Volatile Organic Compounds by EP	A Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	2020302	02/03/12	02/03/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	1.7	1.0	"	"	"	"	"	"	
sec-Butylbenzene	12	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/06/12 16:50

LL_707_020112_01 T120159-03 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,3-Dichloropropane	ND	1.0	ug/l	1	2020302	02/03/12	02/03/12	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	**	"	"	"	"	"
Isopropylbenzene	22	1.0	**	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	110	5.0	"	5	"	"	"	"
n-Propylbenzene	48	1.0	"	1	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	69	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	220	5.0	"	5	"	"	"	"
Vinyl chloride	ND	1.0	"	1	"	"	"	"
Benzene	1200	12	"	25	"	"	"	"
Toluene	150	2.5	"	5	"	"	"	"
Ethylbenzene	100	2.5	"	"	"	"	"	"
m,p-Xylene	1100	25	"	25	"	"	"	"
o-Xylene	96	2.5	"	5	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	1	"	"	"	"
Tert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsias

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/06/12 16:50

LL_707_020112_01 T120159-03 (Water)

ı									
		Reporting							
ı	Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

Ethyl tert-butyl ether	ND	2.0	ug/l	1	2020302	02/03/12	02/03/12	EPA 8260B	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.6 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		94.8 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		101 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit F Project Number: 1003-001-300 Reported: Tustin CA, 92780 Project Manager: Jeremy Squire 02/06/12 16:50

LL_701_020112_01 T120159-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Durgooblo	Dotroloum	Hydrocarbons	by FDA	2015C
Purgeable	Petroleum	Hydrocarbons	DVEPA	りいしつし

C6-C12 (GRO)	300	50	ug/l	1	2020301	02/03/12	02/06/12	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		89.4 %	72.6-	-146	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	2020302	02/03/12	02/06/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	4.3	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	14	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	3.8	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/06/12 16:50

LL_701_020112_01 T120159-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,3-Dichloropropane	ND	1.0	ug/l	1	2020302	02/03/12	02/06/12	EPA 8260E
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
1ethylene chloride	ND	1.0	"	"	"	"	"	"
Japhthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	8.9	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/06/12 16:50

LL_701_020112_01 T120159-04 (Water)

ı									
		Reporting							
ı	Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic	Compounds l	by EPA	Method 8260B

voident organic compounds of Erri	1111001100102002								
Di-isopropyl ether	ND	2.0	ug/l	1	2020302	02/03/12	02/06/12	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		103 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		102 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/06/12 16:50

LL_TB_020112 T120159-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

romobenzene	ND	1.0	ug/l	1	2020302	02/03/12	02/03/12	EPA 8260E
romochloromethane	ND	1.0	"	"	"	"	"	"
romodichloromethane	ND	1.0	"	"	"	"	"	"
romoform	ND	1.0	"	"	"	"	"	"
romomethane	ND	1.0	"	"	"	"	"	"
-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Pichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
ans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsias

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/06/12 16:50

LL_TB_020112 T120159-05 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

eis-1,3-Dichloropropene	ND	0.50	ug/l	1	2020302	02/03/12	02/03/12	EPA 8260B
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
n-Propylbenzene	ND	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
/inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
Toluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
o-Xylene	ND	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsias

Murex Project: Cenco
2640 Walnut Ave. Unit F Project Number: 1003-001-300 Reported:
Tustin CA, 92780 Project Manager: Jeremy Squire 02/06/12 16:50

LL_TB_020112 T120159-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	2020302	02/03/12	02/03/12	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		98.2 %	83.5-119)	"	"	"	"	
Surrogate: Dibromofluoromethane		92.6 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		95.8 %	88.8-117	7	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/06/12 16:50

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2020301 - EPA 5030 GC										
Blank (2020301-BLK1)				Prepared:	02/03/12	Analyze	d: 02/06/12			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	113		"	100		113	72.6-146			
LCS (2020301-BS1)				Prepared:	02/03/12	Analyze	d: 02/06/12			
C6-C12 (GRO)	6070	50	ug/l	5500		110	75-125			
Surrogate 4-Bromofluorobenzene	88.0		"	100		88.0	72.6-146			
Matrix Spike (2020301-MS1)	Sou	rce: T12015	9-01	Prepared:	02/03/12	Analyze	d: 02/06/12			
C6-C12 (GRO)	5590	50	ug/l	5500	166	98.7	65-135			
Surrogate 4-Bromofluorobenzene	95.0		"	100		95.0	72.6-146			
Matrix Spike Dup (2020301-MSD1)	Sou	rce: T12015	9-01	Prepared:	02/03/12	Analyze	d: 02/06/12			
C6-C12 (GRO)	5340	50	ug/l	5500	166	94.0	65-135	4.69	20	
Surrogate 4-Bromofluorobenzene	89.2		"	100		89.2	72.6-146			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/06/12 16:50

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 2020302 - E	PA 5030 GCMS
-------------------	--------------

nobenzene ND 1.0 ug/l nochloromethane ND 1.0 " nodichloromethane ND 1.0 " noform ND 1.0 " nomethane ND 1.0 " nomethane ND 1.0 " Butylbenzene ND 1.0 " Sutylbenzene ND 1.0 " on tetrachloride ND 0.50 " orobenzene ND 1.0 " robenzene ND 1.0 " roform ND 1.0 " roform ND 1.0 " rofortoluene ND 1.0 " clorotoluene ND 1.0 " clorotoluene ND 1.0 " clorotoluene ND 1.0 "
ND
ND
ND
tylbenzene ND 1.0 " Butylbenzene ND 1.0 " Butylbenzene ND 1.0 " Butylbenzene ND 0.50 " robenzene ND 1.0 " robenzene ND 1.0 " rotethane ND 1.0 " rorotorm ND 1.0 " romethane ND 1.0 " romethane ND 1.0 " romethane ND 1.0 " romethane ND 1.0 " altorotoluene ND 1.0 " altorotoluene ND 1.0 " altorotoluene ND 1.0 " altorotoluene ND 1.0 "
ND
ND
on tetrachloride ND 0.50 " robenzene ND 1.0 " roethane ND 1.0 " roform ND 1.0 " romethane ND 1.0 " lorotoluene ND 1.0 " omochloromethane ND 1.0 "
on tetrachloride ND 0.50 " robenzene ND 1.0 " roethane ND 1.0 " roform ND 1.0 " romethane ND 1.0 " lorotoluene ND 1.0 " omochloromethane ND 1.0 "
roethane ND 1.0 " roform ND 1.0 " romethane ND 1.0 " lorotoluene ND 1.0 " omochloromethane ND 1.0 "
roform ND 1.0 " romethane ND 1.0 " dorotoluene ND 1.0 " omochloromethane ND 1.0 "
romethane ND 1.0 " clorotoluene ND 1.0 " clorotoluene ND 1.0 " comochloromethane ND 1.0 "
lorotoluene ND 1.0 " lorotoluene ND 1.0 " omochloromethane ND 1.0 "
lorotoluene ND 1.0 " omochloromethane ND 1.0 "
omochloromethane ND 1.0 "
27 2 11
Dibromo-3-chloropropane ND 1.0 "
Dibromoethane (EDB) ND 1.0 "
omomethane ND 1.0 "
Dichlorobenzene ND 1.0 "
Dichlorobenzene ND 1.0 "
Dichlorobenzene ND 1.0 "
lorodifluoromethane ND 0.50 "
Dichloroethane ND 1.0 "
Dichloroethane ND 0.50 "
Dichloroethene ND 1.0 "
,2-Dichloroethene ND 1.0 "
-1,2-Dichloroethene ND 1.0 "
Dichloropropane ND 1.0 "
Dichloropropane ND 1.0 "
Dichloropropane ND 1.0 "
Dichloropropene ND 1.0 "
,3-Dichloropropene ND 0.50 "
-1,3-Dichloropropene ND 0.50 "
nchlorobutadiene ND 1.0 "
ropylbenzene ND 1.0 "

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/06/12 16:50

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (2020302-BLK1)				Prepared & Ar	nalyzed: 02/03	/12
p-Isopropyltoluene	ND	1.0	ug/l			
Methylene chloride	ND	1.0	"			
Naphthalene	ND	1.0	"			
n-Propylbenzene	ND	1.0	"			
Styrene	ND	1.0	"			
1,1,2,2-Tetrachloroethane	ND	1.0	"			
1,1,1,2-Tetrachloroethane	ND	1.0	"			
Tetrachloroethene	ND	1.0	"			
1,2,3-Trichlorobenzene	ND	1.0	"			
1,2,4-Trichlorobenzene	ND	1.0	"			
1,1,2-Trichloroethane	ND	1.0	"			
1,1,1-Trichloroethane	ND	1.0	"			
Trichloroethene	ND	1.0	"			
Γrichlorofluoromethane	ND	1.0	"			
1,2,3-Trichloropropane	ND	1.0	"			
1,3,5-Trimethylbenzene	ND	1.0	"			
1,2,4-Trimethylbenzene	ND	1.0	"			
Vinyl chloride	ND	1.0	"			
Benzene	ND	0.50	"			
Γoluene	ND	0.50	"			
Ethylbenzene	ND	0.50	"			
n,p-Xylene	ND	1.0	"			
o-Xylene	ND	0.50	"			
Γert-amyl methyl ether	ND	2.0	"			
Γert-butyl alcohol	ND	10	"			
Di-isopropyl ether	ND	2.0	"			
Ethyl tert-butyl ether	ND	2.0	"			
Methyl tert-butyl ether	ND	1.0	"			
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"			
Surrogate 4-Bromofluorobenzene	7.43		"	8.00	92.9	83.5-119
Surrogate Dibromofluoromethane	6.90		"	8.00	86.2	81-136
Surrogate Toluene-d8	7.52		"	8.00	94.0	88.8-117

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsia

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/06/12 16:50

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2020302 - EPA 5030 GCMS										
LCS (2020302-BS1)				Prepared	& Analyz	ed: 02/03	/12			
Chlorobenzene	18.0	1.0	ug/l	20.0		90.2	75-125			
1,1-Dichloroethene	24.6	1.0	"	20.0		123	75-125			
Trichloroethene	22.2	1.0	"	20.0		111	75-125			
Benzene	21.9	0.50	"	20.0		110	75-125			
Toluene	19.8	0.50	"	20.0		99.2	75-125			
Surrogate 4-Bromofluorobenzene	7.54		"	8.00		94.2	83.5-119			
Surrogate Dibromofluoromethane	7.62		"	8.00		95.2	81-136			
Surrogate Toluene-d8	7.07		"	8.00		88.4	88.8-117			S-G0
Matrix Spike (2020302-MS1)	Sou	rce: T12015	9-01	Prepared	& Analyzo	ed: 02/03	/12			
Chlorobenzene	18.1	1.0	ug/l	20.0	ND	90.4	75-125			
1,1-Dichloroethene	100	1.0	"	20.0	70.7	147	75-125			QM-0
Trichloroethene	126	1.0	"	20.0	107	95.0	75-125			
Benzene	21.8	0.50	"	20.0	0.320	107	75-125			
Toluene	20.2	0.50	"	20.0	ND	101	75-125			
Surrogate 4-Bromofluorobenzene	7.71		"	8.00		96.4	83.5-119			
Surrogate Dibromofluoromethane	8.04		"	8.00		100	81-136			
Surrogate Toluene-d8	7.59		"	8.00		94.9	88.8-117			
Matrix Spike Dup (2020302-MSD1)	Sou	rce: T12015	9-01	Prepared	& Analyzo	ed: 02/03/	/12			
Chlorobenzene	17.7	1.0	ug/l	20.0	ND	88.5	75-125	2.18	20	
1,1-Dichloroethene	94.7	1.0	"	20.0	70.7	120	75-125	5.54	20	
Trichloroethene	120	1.0	"	20.0	107	65.4	75-125	4.80	20	QM-0
Benzene	21.9	0.50	"	20.0	0.320	108	75-125	0.458	20	
Toluene	20.1	0.50	"	20.0	ND	101	75-125	0.644	20	
Surrogate 4-Bromofluorobenzene	7.52		"	8.00		94.0	83.5-119			
Surrogate Dibromofluoromethane	7.95		"	8.00		99.4	81-136			
Surrogate Toluene-d8	7.36		"	8.00		92.0	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/06/12 16:50

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

QM-01 The % recovery is outside of established control limits due to matrix interference and/or sample dilution due to matrix effect. The batch

was accepted based on acceptable LCS recovery.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Chain of Custody Record

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Client: Murex Environmental, Inc. Address: 2640 Walnut Ave, Unit F Phone: (714) 508-0800 Project Manager: Jeremy Squire (714) 6	Fax: <u>(714) 50</u> 504-5836	0 <u>8-0880</u>				_	Date:_ Projec Collect Batch	t Nar	ne: Frai	ne S	Sosic	EN	CO	Clier	e:/ nt Projec #:	zt.#:		01-300	_
								I				I							
Sample ID LL_710_020112_01 LL_715_020112_01 LL_701_020112_01 LL_701_020112_01 LL_718_020112	Date Sampled 2- - 2012	Time 9:13 10:44 12:00 14:00	Sample Type GW GW GW Wyer	TPHg (8015	X									2000 Total # of containers	Co	omme	nts/Pres	servative	20 0 Laboratory ID #
								ļ				_							-
				H		_		+-				+		 					\dashv
				\vdash	\vdash	\dashv		+-	\vdash		\vdash	+		 					
Relinquished by: (signature)	Date / Ti		Received b	Z 11 '							f conta			 25 N			Note	es	
Relinquished by: (signature) Relinquished by: (signature)	Date / Ti		Received b	y: (si	gnat	Date	e / Time		Seal	ls int	act? Y/ d good n/cold			 JA	1.2				
Sample disposal Instructions: Disposal @ \$2.00				y. (3)	Dist				Turi	n ar	ound t	ime:		 					

SAMPLE RECEIVING REVIEW SHEET

BATCH# TIZOIS					
Client Name: Morex	Project: ENC	•		· · · · · · · ·	
Received by: Dau	Date/Time Rec	eived: 2	11/12	180	00
Delivered by: Client SunStar Courier G	SO FedEx	Other			
Total number of coolers receivedo Ten	1p criteria = 6°C >	0°C (n	<u>frozen</u>	conta	iners)
Temperature: cooler #1 °C +/- the CF (- 0.2°C)	= 1.2 °C correct	ed temperat	ure		
cooler #2°C +/- the CF (- 0.2°C)	=°C correct	ed temperat	ure		
cooler #3°C +/- the CF (- 0.2°C)					
Samples outside temp. but received on ice, w/in 6 hours of	f final sampling.	≽Yes		o* [□N/A
Custody Seals Intact on Cooler/Sample		∐Yes		o* [∡N/A
Sample Containers Intact		∀ Yes		o*	
Sample labels match COC ID's		₹Yes		o *	
Total number of containers received match COC		¥Yes		o *	
Proper containers received for analyses requested on COC		☑Yes		o*	
Proper preservative indicated on COC/containers for analy	yses requested	Yes		o* [□N/A
Complete shipment received in good condition with corre preservatives and within method specified holding times.	ct temperatures, co		abels, v	olume	es .
* Complete Non-Conformance Receiving Sheet if checked	Cooler/Sample Re	view - Int	ials and	date 2	8c 2/2/12
Comments:					

08 February 2012

Jeremy Squire Murex 2640 Walnut Ave. Unit F Tustin, CA 92780

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 02/03/12 16:15. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Wendy Hsiao

Project Manager

Wordy Hsia

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/08/12 16:41

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_15B_020212_01	T120192-01	Water	02/02/12 10:00	02/03/12 16:15
LL_15A_020212_01	T120192-02	Water	02/02/12 13:00	02/03/12 16:15
LL_16A_020212_01	T120192-03	Water	02/03/12 09:36	02/03/12 16:15
LL_16B_020212_01	T120192-04	Water	02/03/12 10:23	02/03/12 16:15
LL_16C_020212_01	T120192-05	Water	02/03/12 15:00	02/03/12 16:15
LL_106A_020212_01	T120192-06	Water	02/03/12 11:13	02/03/12 16:15
LL_TB_020312	T120192-07	Water	02/03/12 00:00	02/03/12 16:15

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit F Project Number: 1003-001-300
Tustin CA, 92780 Project Manager: Jeremy Squire

280

Reported: 02/08/12 16:41

EPA 8015C

LL_15B_020212_01 T120192-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

2020619

02/06/12

02/07/12

50

Purgeable Petroleum H	vdrocarbons b	v EPA 8015C

C6-C12 (GRO)

CU-C12 (GRO)	200	50	ug/1	1	2020017	02/00/12	02/07/12	LI A 6015C
Surrogate: 4-Bromofluorobenzene		88.8 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by E.	PA Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2020611	02/06/12	02/06/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/08/12 16:41

LL_15B_020212_01 T120192-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,2-Dichloropropane	ND	1.0	ug/l	1	2020611	02/06/12	02/06/12	EPA 8260B
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	m .
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	m .
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	m .
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	II .
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	1.4	1.0	"	"	"	"	"	II .
o-Isopropyltoluene	ND	1.0	"	"	"	"	"	m .
Methylene chloride	ND	1.0	"	"	"	"	"	m .
Naphthalene	ND	1.0	"	"	"	"	"	···
n-Propylbenzene	1.6	1.0	"	"	"	"	"	···
Styrene	ND	1.0	"	"	"	"	"	m .
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	m .
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	II .
Γetrachloroethene	ND	1.0	"	"	"	"	"	II .
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	II .
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	II .
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	II .
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	3.8	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	2.3	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	II .
Benzene	35	0.50	"	"	"	"	"	"
Γoluene	14	0.50	"	"	"	"	"	m .
Ethylbenzene	4.4	0.50	"	"	"	"	"	"
n,p-Xylene	31	1.0	"	"	"	"	"	"
o-Xylene	18	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	80	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco 2640 Walnut Ave. Unit F Project Number: 1003-001-300 Reported: Tustin CA, 92780 Project Manager: Jeremy Squire 02/08/12 16:41

LL_15B_020212_01 T120192-01 (Water)

Analyte	Result	Limit SunStar La	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Reporting							

Volatile Organic Compounds by EPA	Method 8260B	ı						
Di-isopropyl ether	ND	2.0	ug/l	1	2020611	02/06/12	02/06/12	EPA 8260B
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	100	1.0	"	"	"	"	"	"
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"
Surrogate: 4-Bromofluorobenzene		115 %	83.5-	119	"	"	"	"
Surrogate: Dibromofluoromethane		94.9 %	81-1	36	"	"	"	"
Surrogate: Toluene-d8		99.2 %	88.8-	117	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsia

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/08/12 16:41

LL_15A_020212_01 T120192-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable Petroleum Hydrocarbons by EPA 8015C

C6-C12 (GRO)	62000	250	ug/l	5	2020619	02/06/12	02/07/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		101 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by EP	PA Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2020611	02/06/12	02/06/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	41	1.0	"	"	"	"	"	"
sec-Butylbenzene	24	1.0	"	"	"	"	"	"
tert-Butylbenzene	2.2	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/08/12 16:41

LL_15A_020212_01 T120192-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,3-Dichloropropane	ND	1.0	ug/l	1	2020611	02/06/12	02/06/12	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
sis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	150	5.0	"	5	"	"	"	"
p-Isopropyltoluene	24	1.0	"	1	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	4.6	1.0	"	"	"	"	"	"
n-Propylbenzene	300	5.0	"	5	"	"	"	"
Styrene	2.2	1.0	"	1	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	880	25	"	25	"	"	"	"
,2,4-Trimethylbenzene	2900	100	"	100	"	"	"	"
/inyl chloride	ND	1.0	"	1	"	"	"	"
Benzene	4400	50	"	100	"	"	"	"
Toluene	2400	50	"	"	"	"	"	"
Ethylbenzene	2400	50	"	"	"	"	"	"
n,p-Xylene	9900	100	"	"	"	"	"	"
o-Xylene	2300	50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	1	"	"	"	"
Tert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco
2640 Walnut Ave. Unit F Project Number: 1003-001-300 Reported:
Tustin CA, 92780 Project Manager: Jeremy Squire 02/08/12 16:41

LL_15A_020212_01 T120192-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile	Organic	Compounds	by EPA	Method 8260B
voiauic	Organic	Compounds	UVLIA	MICHIOU OZOOD

Ethyl tert-butyl ether	ND	2.0	ug/l	1	2020611	02/06/12	02/06/12	EPA 8260B	
Methyl tert-butyl ether	930	25	"	25	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	1	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		91.8 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		104 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

230

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/08/12 16:41

LL_16A_020212_01 T120192-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

2020619

02/06/12

02/07/12

EPA 8015C

50

Purgeable	Petroleum	Hydrocarbons	by	EPA	8015C

C6-C12 (GRO)

Surrogate: 4-Bromofluorobenzene	90.2 %	72.6-	146	"	"	"	"	
Volatile Organic Compounds by EPA Method 8260B								
Bromobenzene ND	1.0	ug/l	1	2020611	02/06/12	02/08/12	EPA 8260B	
Bromochloromethane ND	1.0	"	"	"	"	"	"	
Bromodichloromethane ND	1.0	"	"	"	"	"	"	
Bromoform ND	1.0	"	"	"	"	"	"	
Bromomethane ND	1.0	"	"	"	"	"	"	
n-Butylbenzene ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene 1.5	1.0	"	"	"	"	"	"	
tert-Butylbenzene ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride ND	0.50	"	"	"	"	"	"	
Chlorobenzene ND	1.0	"	"	"	"	"	"	
Chloroethane ND	1.0	"	"	"	"	"	"	
Chloroform ND	1.0	"	"	"	"	"	"	
Chloromethane ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene ND	1.0	"	"	"	"	"	"	
Dibromochloromethane ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB) ND	1.0	"	"	"	"	"	"	
Dibromomethane ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane 1.1	1.0	"	"	"	"	"	"	
1,2-Dichloroethane ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/08/12 16:41

LL_16A_020212_01 T120192-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,3-Dichloropropane	ND	1.0	ug/l	1	2020611	02/06/12	02/08/12	EPA 8260E
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	5.8	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	1.5	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	16	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/08/12 16:41

LL_16A_020212_01 T120192-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA	Method 8260B								
Di-isopropyl ether	ND	2.0	ug/l	1	2020611	02/06/12	02/08/12	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		108 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		94.2 %	81-1	36	"	"	"	"	

88.8-117

103 %

SunStar Laboratories, Inc.

Surrogate: Toluene-d8

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Murex Project: Cenco

210

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/08/12 16:41

LL_16B_020212_01 T120192-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

2020619 02/06/12

02/07/12

EPA 8015C

50

Purgeable Petroleum Hydrocarbons by EPA 8015C

C6-C12 (GRO)

CU-C12 (GRO)	210	50	ug/1	1	2020017	02/00/12	02/07/12	LI A 6015C	
Surrogate: 4-Bromofluorobenzene		94.0 %	72.6-	146	"	"	"	"	
Volatile Organic Compounds by EPA	A Method 8260F	3							
Bromobenzene	ND	1.0	ug/l	1	2020611	02/06/12	02/06/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	1.3	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	16	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	24	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsia

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/08/12 16:41

LL_16B_020212_01 T120192-04 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,3-Dichloropropane	ND	1.0	ug/l	1	2020611	02/06/12	02/06/12	EPA 8260E
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
1ethylene chloride	ND	1.0	"	"	"	"	"	"
Japhthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
`richloroethene	1.4	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	30	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Tustin CA, 92780Project Manager: Jeremy Squire

Reported: 02/08/12 16:41

LL_16B_020212_01 T120192-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

Di-isopropyl ether	ND	2.0	ug/l	1	2020611	02/06/12	02/06/12	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
(CFC 113)									
Surrogate: 4-Bromofluorobenzene		112 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		105 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		92.9 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsia

Murex Project: Cenco

2640 Walnut Ave. Unit F Project Number: 1003-001-300 Reported: Tustin CA, 92780 Project Manager: Jeremy Squire 02/08/12 16:41

LL_16C_020212_01 T120192-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by FPA	8015C
Purgeable	Petroleum	пуштосатоонѕ	DVEPA	9015C

C6-C12 (GRO)	250	50	ug/l	1	2020619	02/06/12	02/07/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		92.2 %	72.6-146		"	"	"	"
Volatile Organic Compounds by E	PA Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2020611	02/06/12	02/06/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	8.8	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	1.1	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	17	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	2.8	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	54	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	16	1.0	"	"	"	"	"	"
1,2-Dichloropropane	2.0	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsia

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/08/12 16:41

LL_16C_020212_01 T120192-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,3-Dichloropropane	ND	1.0	ug/l	1	2020611	02/06/12	02/06/12	EPA 8260E
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
1ethylene chloride	ND	1.0	"	"	"	"	"	"
Japhthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
`richloroethene	1.0	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	23	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wardy Flsia

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/08/12 16:41

LL_16C_020212_01 T120192-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B											
Di-isopropyl ether	ND	2.0	ug/l	1	2020611	02/06/12	02/06/12	EPA 8260B			
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"			
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"			
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"			
Surrogate: 4-Bromoflyorobenzene		110 %	83 5-	119	"	"	"	"			

 Surrogate: 4-Bromofluorobenzene
 110 %
 83.5-119
 " " " "

 Surrogate: Dibromofluoromethane
 104 %
 81-136
 " " " " "

 Surrogate: Toluene-d8
 94.0 %
 88.8-117
 " " " " "

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit F Project Number: 1003-001-300 Reported: Tustin CA, 92780 Project Manager: Jeremy Squire 02/08/12 16:41

LL_106A_020212_01 T120192-06 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable Petroleum Hydrocarbons by EPA 8015C

C6-C12 (GRO)	440	50	ug/l	1	2020619	02/06/12	02/07/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		96.5 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by EP	Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2020611	02/06/12	02/08/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	1.7	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/08/12 16:41

LL_106A_020212_01 T120192-06 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

3-Dichloropropane	ND	1.0	ug/l	1	2020611	02/06/12	02/08/12	EPA 8260B
2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1-Dichloropropene	ND	1.0	"	"	"	"	"	"
s-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	4.6	1.0	"	"	"	"	"	"
Isopropyltoluene	ND	1.0	"	"	"	"	"	"
ethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
Propylbenzene	1.1	1.0	"	"	"	"	"	"
yrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	11	1.0	"	"	"	"	"	"
enzene	2.7	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
hylbenzene	ND	0.50	"	"	"	"	"	"
,p-Xylene	ND	1.0	"	"	"	"	"	"
Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wardy Flsia

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/08/12 16:41

LL_106A_020212_01 T120192-06 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA	Method 8260B							
Di-isopropyl ether	ND	2.0	ug/l	1	2020611	02/06/12	02/08/12	EPA 8260B
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"
Surrogate: 4-Bromofluorobenzene		107 %	83.5-	119	"	"	"	"

81-136

88.8-117

97.9 %

103 %

SunStar Laboratories, Inc.

 $Surrogate:\ Dibromofluoromethane$

Surrogate: Toluene-d8

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/08/12 16:41

LL_TB_020312 T120192-07 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Bromobenzene	ND	1.0	ug/l	1	2020611	02/06/12	02/06/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wardy Flsia

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/08/12 16:41

LL_TB_020312 T120192-07 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

s-1,3-Dichloropropene	ND	0.50	ug/l	1	2020611	02/06/12	02/06/12	EPA 8260E
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	ND	1.0	"	"	"	"	"	"
Isopropyltoluene	ND	1.0	"	"	"	"	"	"
ethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
Propylbenzene	ND	1.0	"	"	"	"	"	"
yrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
hylbenzene	ND	0.50	"	"	"	"	"	"
,p-Xylene	ND	1.0	"	"	"	"	"	"
Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"
i-isopropyl ether	ND	2.0	"	"	"	"	"	"
hyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
ethyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wardy Flsia

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/08/12 16:41

LL_TB_020312 T120192-07 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	2020611	02/06/12	02/06/12	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		110 %	83.5-119		"	"	"	"	
Surrogate: Dibromofluoromethane		93.9 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		91.5 %	88.8-117		"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit F Project Number: 1003-001-300 Reported: Tustin CA, 92780 Project Manager: Jeremy Squire 02/08/12 16:41

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2020619 - EPA 5030 GC										
Blank (2020619-BLK1)				Prepared:	02/06/12	Analyze	d: 02/07/12			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	92.8		"	100		92.8	72.6-146			
LCS (2020619-BS1)				Prepared:	02/06/12	Analyze	d: 02/07/12			
C6-C12 (GRO)	4790	50	ug/l	5500		87.1	75-125			
Surrogate 4-Bromofluorobenzene	92.3		"	100		92.3	72.6-146			
Matrix Spike (2020619-MS1)	Sou	rce: T12018	7-01	Prepared:	02/06/12	Analyze	d: 02/07/12			
C6-C12 (GRO)	4820	50	ug/l	5500	ND	87.7	65-135			
Surrogate 4-Bromofluorobenzene	91.8		"	100		91.8	72.6-146			
Matrix Spike Dup (2020619-MSD1)	Sou	rce: T12018	7-01	Prepared:	02/06/12	Analyze	d: 02/07/12			
C6-C12 (GRO)	4630	50	ug/l	5500	ND	84.3	65-135	4.01	20	
Surrogate 4-Bromofluorobenzene	93.1		"	100		93.1	72.6-146			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/08/12 16:41

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 2	020611 -	EPA 5030	GCMS
---------	----------	----------	-------------

Blank (2020611-BLK1)				Prepared: 02/06/12 Analyzed: 02/07/12
Bromobenzene	ND	1.0	ug/l	
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
n-Butylbenzene	ND	1.0	"	
sec-Butylbenzene	ND	1.0	"	
tert-Butylbenzene	ND	1.0	"	
Carbon tetrachloride	ND	0.50	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
2-Chlorotoluene	ND	1.0	"	
4-Chlorotoluene	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	
Dibromomethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
Dichlorodifluoromethane	ND	0.50	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	0.50	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,3-Dichloropropane	ND	1.0	"	
2,2-Dichloropropane	ND	1.0	"	
1,1-Dichloropropene	ND	1.0	"	
cis-1,3-Dichloropropene	ND	0.50	"	
trans-1,3-Dichloropropene	ND	0.50	"	
Hexachlorobutadiene	ND	1.0	"	
Isopropylbenzene	ND	1.0	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Plsia

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

%REC

Limits

RPD

Murex Project: Cenco

Result

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/08/12 16:41

Reporting

Limit

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

Allalyte	Result	LIIIII	Omis	LCVCI	Result	/orcec	Lillius	KI D	Lillit	Notes
Batch 2020611 - EPA 5030 GCMS										
Blank (2020611-BLK1)				Prepared:	02/06/12	Analyze	d: 02/07/12			
p-Isopropyltoluene	ND	1.0	ug/l							
Methylene chloride	ND	1.0	"							
Naphthalene	ND	1.0	"							
n-Propylbenzene	ND	1.0	"							
Styrene	ND	1.0	"							
1,1,2,2-Tetrachloroethane	ND	1.0	"							
1,1,1,2-Tetrachloroethane	ND	1.0	"							
Tetrachloroethene	ND	1.0	"							
1,2,3-Trichlorobenzene	ND	1.0	"							
1,2,4-Trichlorobenzene	ND	1.0	"							
1,1,2-Trichloroethane	ND	1.0	"							
1,1,1-Trichloroethane	ND	1.0	"							
Trichloroethene	ND	1.0	"							
Trichlorofluoromethane	ND	1.0	"							
1,2,3-Trichloropropane	ND	1.0	"							
1,3,5-Trimethylbenzene	ND	1.0	"							
1,2,4-Trimethylbenzene	ND	1.0	"							
Vinyl chloride	ND	1.0	"							
Benzene	ND	0.50	"							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
m,p-Xylene	ND	1.0	"							
o-Xylene	ND	0.50	"							
Tert-amyl methyl ether	ND	2.0	"							
Tert-butyl alcohol	ND	10	"							
Di-isopropyl ether	ND	2.0	"							
Ethyl tert-butyl ether	ND	2.0	"							
Methyl tert-butyl ether	ND	1.0	"							
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"							
Surrogate 4-Bromofluorobenzene	8.56		"	8.00		107	83.5-119			
Surrogate Dibromofluoromethane	7.18		"	8.00		89.8	81-136			
Surrogate Toluene-d8	7.98		"	8.00		99.8	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evenly flias

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/08/12 16:41

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2020611 - EPA 5030 GCMS										
LCS (2020611-BS1)				Prepared:	02/06/12	Analyze	d: 02/07/12			
Chlorobenzene	22.6	1.0	ug/l	20.0		113	75-125			
1,1-Dichloroethene	24.1	1.0	"	20.0		121	75-125			
Trichloroethene	22.8	1.0	"	20.0		114	75-125			
Benzene	23.6	0.50	"	20.0		118	75-125			
Toluene	21.4	0.50	"	20.0		107	75-125			
Surrogate 4-Bromofluorobenzene	8.14		"	8.00		102	83.5-119			
Surrogate Dibromofluoromethane	8.69		"	8.00		109	81-136			
Surrogate Toluene-d8	7.13		"	8.00		89.1	88.8-117			
Matrix Spike (2020611-MS1)	So	urce: T12019	3-01	Prepared:	02/06/12	Analyze	d: 02/07/12			
Chlorobenzene	22.2	1.0	ug/l	20.0	ND	111	75-125			
1,1-Dichloroethene	22.8	1.0	"	20.0	ND	114	75-125			
Trichloroethene	20.6	1.0	"	20.0	64.7	NR	75-125			QM-0
Benzene	42.5	0.50	"	20.0	ND	212	75-125			QM-0
Toluene	28.9	0.50	"	20.0	ND	144	75-125			QM-0
Surrogate 4-Bromofluorobenzene	8.69		"	8.00		109	83.5-119			
Surrogate Dibromofluoromethane	8.75		"	8.00		109	81-136			
Surrogate Toluene-d8	7.05		"	8.00		88.1	88.8-117			S-GO
Matrix Spike Dup (2020611-MSD1)	So	urce: T12019	3-01	Prepared:	02/06/12	Analyze	d: 02/07/12			
Chlorobenzene	21.0	1.0	ug/l	20.0	ND	105	75-125	5.74	20	
1,1-Dichloroethene	21.7	1.0	"	20.0	ND	109	75-125	4.67	20	
Trichloroethene	19.6	1.0	"	20.0	64.7	NR	75-125	5.13	20	QM-0
Benzene	37.5	0.50	"	20.0	ND	188	75-125	12.4	20	QM-0
Toluene	25.7	0.50	"	20.0	ND	129	75-125	11.6	20	QM-0
Surrogate 4-Bromofluorobenzene	8.48		"	8.00		106	83.5-119			
Surrogate Dibromofluoromethane	8.55		"	8.00		107	81-136			
Surrogate Toluene-d8	7.54		"	8.00		94.2	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Plsia

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/08/12 16:41

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

QM-01 The % recovery is outside of established control limits due to matrix interference and/or sample dilution due to matrix effect. The batch

was accepted based on acceptable LCS recovery.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

SunStar Laboratories, Inc.
25712 Commercentre Dr
Lake Forest, CA 92630
949-297-5020

Chain of Custody Record

Client: Murex Environmental, Inc. Address: 2640 Walnut Ave, Unit F Phone: (714) 508-0800 Project Manager: Jeremy Squire (714)	Fax: <u>(714) 508-0880</u> 604-5836		Project Nar Collector:	2-3-201 me:CEN Frane Sosic	CO Clier	e:OF nt Project #: 1003 001-300 #:	
Sample ID LL_ISB_0202I2_0 LL_ISA_0202I2_0 LL_I6A_0203I2_0 LL_I6B_0203I2_0 LL_I6C_0203I2_0 LL_I06A_0203I2_0 LL_TB_0203I2	Date Sampled Time 2-2-12 1000 2-2-12 1300 2-3-12 1023 2-3-12 1500 2-3-12 1113	Sample Type GW XX XX XX XX XX XX XX XX XX XX XX XX XX			NOW Total # of containers	Comments/Preservative	20 00 00 00 00 00 00 00 00 00 00 00 00 0
Relinquished by: (signature)	Date / Time	Received by: (signat D	2/3/12	Total # of containers	eals ~	Notes	
Relinquished by: (signature) Relinquished by: (signature)	Date / Time Date / Time	Received by: (signat D		Seals intact? Y/N/N Received good condition/cold Turn around time	4	ુ પ્ _ર પ ^ક	

SAMPLE RECEIVING REVIEW SHEET

BATCH# 7/20/92			
Client Name: Mukex Env. Proje	ct: Cenc	:0	
Received by: Date	Time Received:	2-3	-12/1615
Delivered by: Client SunStar Courier GSO	FedEx		/
Total number of coolers receivedO Temp criteri	$a = 6^{\circ}C > 0^{\circ}C \text{ (no}$	frozen (containers)
Temperature: cooler #1 $\underline{4.6}$ °C +/- the CF (-0.2°C) = $\underline{4.4}$	°C corrected temperat	re	
cooler #2°C +/- the CF (- 0.2°C) =	°C corrected temperat	ire	
cooler #3°C +/- the CF (- 0.2°C) =	°C corrected temperat	ıre	
Samples outside temp. but received on ice, w/in 6 hours of final same	npling. \(\sum Yes	□No	*
Custody Seals Intact on Cooler/Sample	□Yes	□No	* \(\sqrt{N}/A
Sample Containers Intact	∑Yes	□No	*
Sample labels match COC ID's	∑Yes	□No	*
Total number of containers received match COC	∑Yes	□No	*
Proper containers received for analyses requested on COC	∑ Yes	□No	*
Proper preservative indicated on COC/containers for analyses reque	ested Yes	□No	N/A
Complete shipment received in good condition with correct temperatures and within method specified holding times. Yes		bels, vo	lumes
* Complete Non-Conformance Receiving Sheet if checked Cooler/S	Sample Review - Initia	ls and da	te <u>St 2-3-12</u>
Comments:			

09 February 2012

Jeremy Squire Murex 2640 Walnut Ave. Unit F Tustin, CA 92780

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 02/06/12 16:28. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Wendy Hsiao For Daniel Chavez

Wordy Hsias

Project Manager

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/09/12 16:13

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_W4_020612_01	T120203-01	Water	02/06/12 13:45	02/06/12 16:28
LL_W1_020612_01	T120203-02	Water	02/06/12 15:00	02/06/12 16:28
LL_TB_020612_01	T120203-03	Water	02/06/12 00:00	02/06/12 16:28

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wardy Flsia

Murex Project: Cenco

2640 Walnut Ave. Unit F Project Number: 1003-001-300
Tustin CA, 92780 Project Manager: Jeremy Squire

Reported: 02/09/12 16:13

LL_W4_020612_01 T120203-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable Petroleum Hydrocarbon	ns by EPA 8015C								
C6-C12 (GRO)	1100	50	ug/l	1	2020724	02/07/12	02/08/12	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		92.1 %	72.6-1	46	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260B								
Bromohenzene	ND	1.0	110/1	1	2020716	02/07/12	02/07/12	EPA 8260B	•

volatile Organic Compounds by	El A Mellou 6200D								
Bromobenzene	ND	1.0	ug/l	1	2020716	02/07/12	02/07/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	2.0	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/09/12 16:13

LL_W4_020612_01 T120203-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

2-Dichloropropane	ND	1.0	ug/l	1	2020716	02/07/12	02/07/12	EPA 8260E
3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1-Dichloropropene	ND	1.0	"	"	"	"	"	"
s-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	18	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Iethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	8.5	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	6.2	1.0	"	"	"	"	"	"
enzene	410	5.0	"	10	"	"	"	"
oluene	ND	0.50	"	1	"	"	"	"
thylbenzene	0.79	0.50	"	"	"	"	"	"
ı,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/09/12 16:13

LL_W4_020612_01 T120203-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EP.	Volatile Organic Compounds by EPA Method 8260B													
Tert-butyl alcohol	ND	10	ug/l	1	2020716	02/07/12	02/07/12	EPA 8260B						
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"						
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"						
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"						

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Plsia

Murex Project: Cenco

160

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/09/12 16:13

LL_W1_020612_01 T120203-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

2020724

02/07/12

02/08/12

EPA 8015C

50

Purgeable	Petroleum	Hydrocarbons	by	EPA	8015C

C6-C12 (GRO)

Surrogate: 4-Bromofluorobenzene	89.3 %	72.6-	146	"	"	"	"	
Volatile Organic Compounds by EPA Method 8260B	}							
Bromobenzene ND	1.0	ug/l	1	2020716	02/07/12	02/07/12	EPA 8260B	
Bromochloromethane ND	1.0	"	"	"	"	"	"	
Bromodichloromethane ND	1.0	"	"	"	"	"	"	
Bromoform ND	1.0	"	"	"	"	"	"	
Bromomethane ND	1.0	"	"	"	"	"	"	
n-Butylbenzene ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride ND	0.50	"	"	"	"	"	"	
Chlorobenzene ND	1.0	"	"	"	"	"	"	
Chloroethane ND	1.0	"	"	"	"	"	"	
Chloroform ND	1.0	"	"	"	"	"	"	
Chloromethane ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene ND	1.0	"	"	"	"	"	"	
Dibromochloromethane ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB) ND	1.0	"	"	"	"	"	"	
Dibromomethane ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene 3.7	1.0	"	"	"	"	"	"	
1,2-Dichloropropane ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Flsia

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/09/12 16:13

LL_W1_020612_01 T120203-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,3-Dichloropropane	ND	1.0	ug/l	1	2020716	02/07/12	02/07/12	EPA 8260B
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	2.0	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Vaphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	2.4	1.0	"	"	"	"	"	"
Benzene	18	0.50	"	"	"	"	"	"
Coluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
ı,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flicas

EPA 8260B

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/09/12 16:13

LL_W1_020612_01 T120203-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds b	y EPA Method 8260B						
Di-isopropyl ether	ND	2.0	ug/l	1	2020716	02/07/12	02/07/12
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"

 Surrogate: 4-Bromofluorobenzene
 103 %
 83.3-119

 Surrogate: Dibromofluoromethane
 104 %
 81-136
 " " " "

 Surrogate: Toluene-d8
 99.2 %
 88.8-117
 " " " "

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Plsia

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/09/12 16:13

LL_TB_020612_01 T120203-03 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	St	ınstar La	aboratori	es, inc.					
Volatile Organic Compounds by	EPA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	2020716	02/07/12	02/07/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/09/12 16:13

LL_TB_020612_01 T120203-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

s-1,3-Dichloropropene	ND	0.50	ug/l	1	2020716	02/07/12	02/07/12	EPA 8260E
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	ND	1.0	"	"	"	"	"	"
Isopropyltoluene	ND	1.0	"	"	"	"	"	"
lethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
,p-Xylene	ND	1.0	"	"	"	"	"	"
Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"
i-isopropyl ether	ND	2.0	"	"	"	"	"	"
thyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
lethyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Flsia

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/09/12 16:13

LL_TB_020612_01 T120203-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	2020716	02/07/12	02/07/12	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		98.8 %	83.5-119		"	"	"	"	
Surrogate: Dibromofluoromethane		100 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		99.2 %	88.8-117		"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Flsia

Murex Project: Cenco

2640 Walnut Ave. Unit F Project Number: 1003-001-300 Reported: Tustin CA, 92780 Project Manager: Jeremy Squire 02/09/12 16:13

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2020724 - EPA 5030 GC										
Blank (2020724-BLK1)				Prepared:	02/07/12	Analyzed	1: 02/08/12			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	92.5		"	100		92.5	72.6-146			
LCS (2020724-BS1)				Prepared:	02/07/12	Analyzed	d: 02/08/12			
C6-C12 (GRO)	4530	50	ug/l	5500		82.4	75-125			
Surrogate 4-Bromofluorobenzene	91.1		"	100		91.1	72.6-146			
Matrix Spike (2020724-MS1)	Sou	rce: T12020	3-01	Prepared:	02/07/12	Analyzed	d: 02/08/12			
C6-C12 (GRO)	5690	50	ug/l	5500	1150	82.6	65-135			
Surrogate 4-Bromofluorobenzene	95.8		"	100		95.8	72.6-146			
Matrix Spike Dup (2020724-MSD1)	Sou	rce: T12020	3-01	Prepared:	02/07/12	Analyzed	d: 02/08/12			
C6-C12 (GRO)	5480	50	ug/l	5500	1150	78.7	65-135	3.81	20	
Surrogate 4-Bromofluorobenzene	86.7		"	100		86.7	72.6-146			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Plsia

Batch 2020716 - EPA 5030 GCMS

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/09/12 16:13

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (2020716-BLK1)				Prepared & Analyzed: 02/07/12
Bromobenzene	ND	1.0	ug/l	
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
n-Butylbenzene	ND	1.0	"	
sec-Butylbenzene	ND	1.0	"	
tert-Butylbenzene	ND	1.0	"	
Carbon tetrachloride	ND	0.50	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
2-Chlorotoluene	ND	1.0	"	
4-Chlorotoluene	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	
Dibromomethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
Dichlorodifluoromethane	ND	0.50	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	0.50	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,3-Dichloropropane	ND	1.0	"	
2,2-Dichloropropane	ND	1.0	"	

SunStar Laboratories, Inc.

1,1-Dichloropropene

Hexachlorobutadiene

Isopropylbenzene

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsia

ND

ND

ND

ND

ND

1.0

0.50

0.50

1.0

1.0

Analyte

1,2,3-Trichloropropane

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

Tert-amyl methyl ether

Tert-butyl alcohol

Di-isopropyl ether

Ethyl tert-butyl ether

Vinyl chloride

Ethylbenzene

m,p-Xylene

o-Xylene

Benzene

Toluene

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

Murex Project: Cenco

Result

ND

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/09/12 16:13

Reporting

Limit

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

%REC

Limits

RPD

Blank (2020716-BLK1)				Prepared & Analyzed: 02/07/12
p-Isopropyltoluene	ND	1.0	ug/l	
Methylene chloride	ND	1.0	"	
Naphthalene	ND	1.0	"	
n-Propylbenzene	ND	1.0	"	
Styrene	ND	1.0	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	
Tetrachloroethene	ND	1.0	"	
1,2,3-Trichlorobenzene	ND	1.0	"	
1,2,4-Trichlorobenzene	ND	1.0	"	
1,1,2-Trichloroethane	ND	1.0	"	
1,1,1-Trichloroethane	ND	1.0	"	
Trichloroethene	ND	1.0	"	
Trichlorofluoromethane	ND	1.0	"	

Methyl tert-butyl ether	ND	1.0	"				
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"				
Surrogate 4-Bromofluorobenzene	8.01		"	8.00	100	83.5-119	
Surrogate Dibromofluoromethane	8.03		"	8.00	100	81-136	
Surrogate Toluene-d8	7.85		"	8.00	98.1	88.8-117	

1.0

1.0

1.0

1.0

0.50

0.50

0.50

1.0

0.50

2.0

10

2.0

2.0

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evenly flias

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/09/12 16:13

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2020716 - EPA 5030 GCMS										
LCS (2020716-BS1)				Prepared	& Analyze	ed: 02/07/	/12			
Chlorobenzene	19.0	1.0	ug/l	20.0		94.9	75-125			
1,1-Dichloroethene	22.3	1.0	"	20.0		112	75-125			
Trichloroethene	20.2	1.0	"	20.0		101	75-125			
Benzene	21.8	0.50	"	20.0		109	75-125			
Toluene	19.4	0.50	"	20.0		97.0	75-125			
Surrogate 4-Bromofluorobenzene	7.75		"	8.00		96.9	83.5-119			
Surrogate Dibromofluoromethane	8.41		"	8.00		105	81-136			
Surrogate Toluene-d8	7.94		"	8.00		99.2	88.8-117			
Matrix Spike (2020716-MS1)	So	urce: T12020	3-01	Prepared:	02/07/12	Analyze	d: 02/08/12			
Chlorobenzene	20.7	1.0	ug/l	20.0	ND	103	75-125			
1,1-Dichloroethene	22.3	1.0	"	20.0	ND	111	75-125			
Trichloroethene	21.6	1.0	"	20.0	ND	108	75-125			
Benzene	346	0.50	"	20.0	407	NR	75-125			QM-02
Toluene	21.5	0.50	"	20.0	0.390	106	75-125			
Surrogate 4-Bromofluorobenzene	8.18		"	8.00		102	83.5-119			
Surrogate Dibromofluoromethane	8.31		"	8.00		104	81-136			
Surrogate Toluene-d8	8.20		"	8.00		102	88.8-117			
Matrix Spike Dup (2020716-MSD1)	So	urce: T12020	3-01	Prepared:	02/07/12	Analyze	d: 02/08/12			
Chlorobenzene	19.4	1.0	ug/l	20.0	ND	96.8	75-125	6.55	20	
1,1-Dichloroethene	21.8	1.0	"	20.0	ND	109	75-125	2.13	20	
Trichloroethene	20.9	1.0	"	20.0	ND	104	75-125	3.25	20	
Benzene	355	0.50	"	20.0	407	NR	75-125	2.34	20	QM-02
Toluene	20.8	0.50	"	20.0	0.390	102	75-125	3.16	20	
Surrogate 4-Bromofluorobenzene	8.09		"	8.00		101	83.5-119			
Surrogate Dibromofluoromethane	8.24		"	8.00		103	81-136			
Surrogate Toluene-d8	8.10		"	8.00		101	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/09/12 16:13

Notes and Definitions

QM-02 The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte

inherent in the sample.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Plsia

Chain of Custody Record

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Client: Murex Environmental, Inc.						Da	ıte:	2-	-6	- /	20	12	<u></u>		_ Pa	ge:_		OF _		_	
Address: 2640 Walnut Ave, Unit F						Pro	oject	Nam	ne: _		C	EN	CO		_						
Phone: <u>(714) 508-0800</u>	Fax: <u>(714) 50</u>	08-0880				Co	ollecte	or:	Fran	ne S	osic				Clie	nt P	roject #:	1003-	001-300		
Project Manager: Jeremy Squire (714)	604-5836					Ba	tch#	:	TI	20	207	}			ED	F #:_					
		г — —	г — —			- 1.	т т			Т		_	_		_	_				_	\neg
										-		+	+		-	+-				_	7
															1						ı
		_													2						
				Ξ	<u>B</u>	-						-			containers						١
				5											l ä					#	ا ځ
				80	(82							-		-	o to					خ ا	اجَ
				g (S										#					Į į	ğ
Sample ID	Date Sampled	Time	Sample Type	TPHg (8015 M)	VOCs (8260										Total		Comr	mente/Pre	eservative	I aboratory ID	an
LL_W4_020612_01	2-6-12	1345	GW	X	V	\dashv	+ +		+	+	\dashv	\dashv	+	+	15	+-	Com	TICINS/I TO	3CI Valive	0 1	_
LL_WI_020612_01	2-6-12	1500	GW	文	Ż							\top			6					01	
U_TB_0206/2			Water		X										2	\perp				0	3
				_			\perp	-	_	_		4	_		4	4-				+	_
	+			-			-	-	-		-+	+			+-	+				+	\dashv
	 			+ -	\vdash	\dashv	+	-	-	\dashv	-+	+	+	_	+	+				+	_
				1		\top	1		7		1	\top	\top			十				\top	
																				\perp	
				_			1		_	_	_	_		_	_					+	_
				-	-	_	+		-	-	_	+			+-	+				+	_
	 	 	 	+-		_	+			-	+	+	+	_	+	+				+	_
						_					\neg	\neg				十					
Relinquished by: (signature)	Date / T	ime	Received	y: (si	gnat	Date /	Time	28	Tota	l # of	conta	iner	S		14	4		No	tes		
7-6-2012	1628	<u></u>	1/2	_	12	2/6	12 "		Chai	n of	Custo	dy s	eals		J						
Relinquished by: (signature)	Date / T	ime	Received b	y: (si	gnat	Date /	Time				act? Y		IA		MA						
											good /cold				Y	1 7	į.				
Relinquished by: (signature)	Date / T	ime	Received b	y: (si	gnat	Date /	Time		30110		Jolu				1	_ 4	مار				
									Turr	1 arc	und 1	time	<u>:</u>								
Sample disposal Instructions: Disposal @ \$2.0	0 each	Return to	client		Pick	up															

SAMPLE RECEIVING REVIEW SHEET

BATCH# T120203				
Client Name: Project: _	Cena	,		
Received by: Date/Time	e Received:	2/6/	12 1628	
Delivered by: Client SunStar Courier GSO Fedl	Ex Other			
Total number of coolers received \ Temp criteria = 6	6°C > 0°C (no <u>f</u>	<u>rozen</u> c	ontainers)	
Temperature: cooler #1 2.8 °C +/- the CF (-0.2°C) = 2.6 °C of	corrected temperalu	re		
cooler #2°C +/- the CF (- 0.2°C) =°C (-	corrected temperalu	ге		
cooler #3°C +/- the CF (- 0.2°C) =°C	corrected temperatu	re		Ė
Samples outside temp. but received on ice, w/in 6 hours of final sampling	ng. XYes	□Nø*	*	
Custody Seals Intact on Cooler/Sample	∐Yes	□Nø*	* XN/A	
Sample Containers Intact	∑Yes	□No*	k	
Sample labels match COC ID's	∑Yes	□Nø*	k	
Total number of containers received match COC	∑Yes	□No*	ķ	
Proper containers received for analyses requested on COC	∭Yes	□No*	ŧ	
Proper preservative indicated on COC/containers for analyses requested	∑Yes	□No*	* □N/A	
Complete shipment received in good condition with correct temperature preservatives and within method specified holding times. Yes	s, containers, a	bels, vo	00	
* Complete Non-Conformance Receiving Sheet if checked Cooler/Samp	le Review - Init a	ls and da	te	2/7/12
Comments:	Tentzanorialmater			

10 February 2012

Jeremy Squire Murex 2640 Walnut Ave. Unit F Tustin, CA 92780

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 02/07/12 15:37. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Wendy Hsiao

Project Manager

Wordy Hsia

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/10/12 15:51

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_17A_020712_01	T120208-01	Water	02/07/12 10:48	02/07/12 15:37
LL_17B_020712_01	T120208-02	Water	02/07/12 12:34	02/07/12 15:37
LL_17C_020712_01	T120208-03	Water	02/07/12 15:10	02/07/12 15:37
LL_W8_020712_01	T120208-04	Water	02/07/12 13:50	02/07/12 15:37
LL_TB_020712	T120208-05	Water	02/07/12 00:00	02/07/12 15:37

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/10/12 15:51

LL_17A_020712_01 T120208-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable .	Petroleum .	Hydrocarbons	by EPA 8015C

C6-C12 (GRO)	ND	50	ug/l	1	2020810	02/08/12	02/08/12	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		87.5 %	72.6-	146	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260l	В							
Bromobenzene	ND	1.0	ug/l	1	2020809	02/08/12	02/08/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	1.5	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/10/12 15:51

LL_17A_020712_01 T120208-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,2-Dichloropropane	ND	1.0	ug/l	1	2020809	02/08/12	02/08/12	EPA 8260E
3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
lexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Iethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Tustin CA, 92780Project Manager: Jeremy Squire

Reported: 02/10/12 15:51

LL_17A_020712_01 T120208-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

Tert-butyl alcohol	17	10	ug/l	1	2020809	02/08/12	02/08/12	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		109 %	83.5-	83.5-119		"	"	"	
Surrogate: Dibromofluoromethane		95.5 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		103 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit F Project Number: 1003-001-300 Reported: Tustin CA, 92780 Project Manager: Jeremy Squire 02/10/12 15:51

LL_17B_020712_01 T120208-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by FPA	8015C
Purgeable	Petroleum	пуштосатоонѕ	DVEPA	9015C

C6-C12 (GRO)	ND	50	ug/l	1	2020810	02/08/12	02/08/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		84.7 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by El	PA Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2020809	02/08/12	02/08/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	II .
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/10/12 15:51

LL_17B_020712_01 T120208-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,2-Dichloropropane	ND	1.0	ug/l	1	2020809	02/08/12	02/08/12	EPA 8260E
3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
lexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Iethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco
2640 Walnut Ave. Unit F Project Number: 1003-001-300

2640 Walnut Ave. Unit FProject Number: 1003-001-300Tustin CA, 92780Project Manager: Jeremy Squire

Reported: 02/10/12 15:51

LL_17B_020712_01 T120208-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

Tert-butyl alcohol	14	10	ug/l	1	2020809	02/08/12	02/08/12	EPA 8260B
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"
Surrogate: 4-Bromofluorobenzene		107 %	83.5-	83.5-119		"	"	"
Surrogate: Dibromofluoromethane		101 %	81-1	36	"	"	"	"
Surrogate: Toluene-d8		104 %	88.8-	117	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

ND

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/10/12 15:51

LL_17C_020712_01 T120208-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

2020810

02/08/12

02/08/12

EPA 8015C

50

Purgeable Petroleum Hydrocarbons by EPA 8015C

C6-C12 (GRO)

Surrogate: 4-Bromofluorobenzene		86.4 %	72.6-	146	"	"	"	"	
Volatile Organic Compounds by El	PA Method 8260	В							
Bromobenzene	ND	1.0	ug/l	1	2020809	02/08/12	02/08/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	u .	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/10/12 15:51

LL_17C_020712_01 T120208-03 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,2-Dichloropropane	ND	1.0	ug/l	1	2020809	02/08/12	02/08/12	EPA 8260E
3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
lexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Iethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/10/12 15:51

LL_17C_020712_01 T120208-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds b	y EPA Method 8260B
-------------------------------------	--------------------

, order organic compounds by Err	1 1/10thou 0200B								
Tert-butyl alcohol	10	10	ug/l	1	2020809	02/08/12	02/08/12	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		110 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		104 %	81-1	136	"	"	"	"	
Surrogate: Toluene-d8		99.4 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Murex Project: Cenco

90

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/10/12 15:51

LL_W8_020712_01 T120208-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

2020810

02/08/12

02/08/12

EPA 8015C

50

Purgeable	Petroleum	Hydrocarbons	by	EPA	8015C

C6-C12 (GRO)

Surrogate: 4-Bromofluorobenzene		89.8 %	72.6-	146	"	"	"	"	
Volatile Organic Compounds by EP	A Method 8260	В							
Bromobenzene	ND	1.0	ug/l	1	2020809	02/08/12	02/08/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Plsia

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/10/12 15:51

LL_W8_020712_01 T120208-04 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by ,2-Dichloropropane	ND	1.0	ug/l	1	2020809	02/08/12	02/08/12	EPA 8260B
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
oluene	0.73	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
ı,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/10/12 15:51

LL_W8_020712_01 T120208-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

volatile Organic Compounds by I	EPA Method 8260B			
Tert-butyl alcohol	ND	10	ug/l	1

Tert-butyl alcohol	ND	10	ug/l	1	2020809	02/08/12	02/08/12	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		107 %	83.5-1	119	"	"	"	"	
Surrogate: Dibromofluoromethane		102 %	81-1.	36	"	"	"	"	
Surrogate: Toluene-d8		103 %	88.8-1	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/10/12 15:51

LL_TB_020712 T120208-05 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Bromobenzene	ND	1.0	ug/l	1	2020809	02/08/12	02/08/12	EPA 8260E
romochloromethane	ND	1.0	"	"	"	"	"	"
Fromodichloromethane	ND	1.0	"	"	"	"	"	"
Gromoform	ND	1.0	"	"	"	"	"	"
Fromomethane	ND	1.0	"	"	"	"	"	"
-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/10/12 15:51

LL_TB_020712 T120208-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

is-1,3-Dichloropropene	ND	0.50	ug/l	1	2020809	02/08/12	02/08/12	EPA 8260E
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
fethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"
i-isopropyl ether	ND	2.0	"	"	"	"	"	"
thyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
lethyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/10/12 15:51

LL_TB_020712 T120208-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	2020809	02/08/12	02/08/12	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		109 %	83.5-119)	"	"	"	"	
Surrogate: Dibromofluoromethane		100 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		102 %	88.8-117	7	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit F Project Number: 1003-001-300 Reported: Tustin CA, 92780 Project Manager: Jeremy Squire 02/10/12 15:51

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2020810 - EPA 5030 GC										
Blank (2020810-BLK1)				Prepared	& Analyze	ed: 02/08/	12			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	86.1		"	100		86.1	72.6-146			
LCS (2020810-BS1)				Prepared	& Analyze	ed: 02/08/	12			
C6-C12 (GRO)	5180	50	ug/l	5500		94.2	75-125			
Surrogate 4-Bromofluorobenzene	90.3		"	100		90.3	72.6-146			
Matrix Spike (2020810-MS1)	Sou	rce: T12020	8-01	Prepared	& Analyze	ed: 02/08/	12			
C6-C12 (GRO)	5180	50	ug/l	5500	30.0	93.7	65-135			
Surrogate 4-Bromofluorobenzene	92.7		"	100		92.7	72.6-146			
Matrix Spike Dup (2020810-MSD1)	Sou	rce: T12020	8-01	Prepared	& Analyze	ed: 02/08/	12			
C6-C12 (GRO)	4930	50	ug/l	5500	30.0	89.2	65-135	4.96	20	
Surrogate 4-Bromofluorobenzene	90.8		"	100		90.8	72.6-146			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/10/12 15:51

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2020809 - EPA 5030 GCMS										

Blank (2020809-BLK1)				Prepared & Analyzed: 02/08/12
Bromobenzene	ND	1.0	ug/l	
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
n-Butylbenzene	ND	1.0	"	
sec-Butylbenzene	ND	1.0	"	
tert-Butylbenzene	ND	1.0	"	
Carbon tetrachloride	ND	0.50	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
2-Chlorotoluene	ND	1.0	"	
4-Chlorotoluene	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	
Dibromomethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
Dichlorodifluoromethane	ND	0.50	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	0.50	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,3-Dichloropropane	ND	1.0	"	
2,2-Dichloropropane	ND	1.0	"	
1,1-Dichloropropene	ND	1.0	"	
cis-1,3-Dichloropropene	ND	0.50	"	
trans-1,3-Dichloropropene	ND	0.50	"	
Hexachlorobutadiene	ND	1.0	"	
Isopropylbenzene	ND	1.0	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Plsia

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/10/12 15:51

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2020809 - EPA 5030 GCMS										
Blank (2020809-BLK1)	Prepared & Analyzed: 02/08/12									_

Blank (2020809-BLK1)				Prepared & Analyzed: 02/08/12
p-Isopropyltoluene	ND	1.0	ug/l	
Methylene chloride	ND	1.0	"	
Naphthalene	ND	1.0	"	
n-Propylbenzene	ND	1.0	"	
Styrene	ND	1.0	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	
Tetrachloroethene	ND	1.0	"	
1,2,3-Trichlorobenzene	ND	1.0	"	
1,2,4-Trichlorobenzene	ND	1.0	"	
1,1,2-Trichloroethane	ND	1.0	"	
1,1,1-Trichloroethane	ND	1.0	"	
Trichloroethene	ND	1.0	"	
Trichlorofluoromethane	ND	1.0	"	
1,2,3-Trichloropropane	ND	1.0	"	
1,3,5-Trimethylbenzene	ND	1.0	"	
1,2,4-Trimethylbenzene	ND	1.0	"	
Vinyl chloride	ND	1.0	"	
Benzene	ND	0.50	"	
Toluene	ND	0.50	"	
Ethylbenzene	ND	0.50	"	
m,p-Xylene	ND	1.0	"	
o-Xylene	ND	0.50	"	
Tert-amyl methyl ether	ND	2.0	"	
Tert-butyl alcohol	ND	10	"	
Di-isopropyl ether	ND	2.0	"	
Ethyl tert-butyl ether	ND	2.0	"	
Methyl tert-butyl ether	ND	1.0	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	
Surrogate 4-Bromofluorobenzene	8.59		"	8.00 107 83.5-119
Surrogate Dibromofluoromethane	7.43		"	8.00 92.9 81-136
Surrogate Toluene-d8	7.98		"	8.00 99.8 88.8-117

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/10/12 15:51

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2020809 - EPA 5030 GCMS	-			-			-		-	
LCS (2020809-BS1)				Prepared:	02/08/12	Analyze	d: 02/10/12			
Chlorobenzene	21.1	1.0	ug/l	20.0		105	75-125			
1,1-Dichloroethene	19.0	1.0	"	20.0		95.0	75-125			
Trichloroethene	20.3	1.0	"	20.0		101	75-125			
Benzene	19.6	0.50	"	20.0		97.8	75-125			
Toluene	21.2	0.50	"	20.0		106	75-125			
Surrogate 4-Bromofluorobenzene	8.78		"	8.00		110	83.5-119			
Surrogate Dibromofluoromethane	7.45		"	8.00		93.1	81-136			
Surrogate Toluene-d8	8.28		"	8.00		104	88.8-117			
Matrix Spike (2020809-MS1)	So	Source: T120208-01			02/08/12	Analyze				
Chlorobenzene	21.2	1.0	ug/l	20.0	ND	106	75-125			
1,1-Dichloroethene	19.4	1.0	"	20.0	ND	96.8	75-125			
Trichloroethene	19.7	1.0	"	20.0	ND	98.3	75-125			
Benzene	19.7	0.50	"	20.0	ND	98.7	75-125			
Toluene	21.0	0.50	"	20.0	ND	105	75-125			
Surrogate 4-Bromofluorobenzene	8.39		"	8.00		105	83.5-119			
Surrogate Dibromofluoromethane	7.28		"	8.00		91.0	81-136			
Surrogate Toluene-d8	8.00		"	8.00		100	88.8-117			
Matrix Spike Dup (2020809-MSD1)	So	urce: T12020	8-01	Prepared:	02/08/12	Analyze	d: 02/10/12			
Chlorobenzene	21.2	1.0	ug/l	20.0	ND	106	75-125	0.236	20	
1,1-Dichloroethene	19.3	1.0	"	20.0	ND	96.4	75-125	0.311	20	
Trichloroethene	20.7	1.0	"	20.0	ND	104	75-125	5.15	20	
Benzene	20.5	0.50	"	20.0	ND	102	75-125	3.78	20	
Toluene	20.8	0.50	"	20.0	ND	104	75-125	0.717	20	
Surrogate 4-Bromofluorobenzene	8.22		"	8.00		103	83.5-119			
Surrogate Dibromofluoromethane	7.80		"	8.00		97.5	81-136			
Surrogate Toluene-d8	8.13		"	8.00		102	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Wordy Plsia

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/10/12 15:51

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Chain of Custody Record

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Client: Murex Environmental, Inc.							Date:_	2.	- + .	-20	212	<u></u>		Page	э: <u> 1 </u>	OF	1	_
Address: <u>2640 Walnut Ave, Unit F</u>						F	Project	Nan	ne:		CEN	00						
Phone: <u>(714) 508-0800</u>	Fax: (714) 508	<u>8-0880</u>					Collec	tor:	Frane	Sosio	C			Clien	t Project i	#: 1003 -	001-300	
Project Manager: <u>Jeremy Squire</u> (714)	604-5836					E	Batch :	# :	T12	208	}			EDF	#:			
·	Г		Γ			_	Т		·		П			Г				i
Sample ID U_17A_020712_01 U_17B_020712_01 U_17B_020712_01 U_17B_020712_01 U_17B_020712_01 Relinquished by: (signature) F.Sosic 2 Relinquished by: (signature)	Date Sampled 2:4-20/2 Date / Tin 7-20/2 Date / Tin	/537- ne	Sample Type GW GW GW Water Received b	by: (si	ignat	Date	/ Time	12	Chain Seals Receiv	of Cust intact? /ed goo ion/colo		als	8.:	MONON Total # of containers	Con		eservative	90 00 00 00 00 00 00 00 00 00 00 00 00 0

SAMPLE RECEIVING REVIEW SHEET

BATCH #					
Client Name: Musex Env. Pro	oject:	CENCO			
:					
Received by: Da	te/Time Rec	eived:	2-7-	12/	15:37
Delivered by: Client SunStar Courier GSO	FedEx	Other			
Total number of coolers receivedO Temp crite	eria = 6°C >	• 0°C (no	<u>frozen</u>	containe	rs)
Temperature: cooler #1 $\cancel{8.9}$ °C +/- the CF (-0.2°C) = $\cancel{8.2}$	2°C correct	ed temperat	ure		
cooler #2°C +/- the CF (- 0.2°C) =	°C correct	ed tempera	ure		
cooler #3°C +/- the CF (- 0.2°C) =	°С соттест	ed tempera	ure		
Samples outside temp. but received on ice, w/in 6 hours of final s	sampling.	₩Yes	□No	*	I/A
Custody Seals Intact on Cooler/Sample		∐Yes	□No	* \(\) N	I/A
Sample Containers Intact		Yes	□No	*	
Sample labels match COC ID's		∑ Yes	□No	*	
Total number of containers received match COC		⊠Yes	□No	,*	
Proper containers received for analyses requested on COC		∑Yes	□No	,*	
Proper preservative indicated on COC/containers for analyses rec	quested	¥Yes	□No	*	I/A
Complete shipment received in good condition with correct temp preservatives and within method specified holding times.			abels, v	olumes	
* Complete Non-Conformance Receiving Sheet if checked Coole	er/Sample Re	view - Init	als and d	ate 82	2-7-12
Comments:					

13 February 2012

Jeremy Squire Murex 2640 Walnut Ave. Unit F Tustin, CA 92780

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 02/08/12 16:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Wendy Hsiao

Project Manager

Wordy Hsia

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/13/12 15:43

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_W7_020812_01	T120212-01	Water	02/08/12 09:00	02/08/12 16:30
LL_W9_020812_01	T120212-02	Water	02/08/12 15:46	02/08/12 16:30
LL_W10_020812_01	T120212-03	Water	02/08/12 08:00	02/08/12 16:30
LL_W11_020812_01	T120212-04	Water	02/08/12 12:07	02/08/12 16:30
LL_W12_020812_01	T120212-05	Water	02/08/12 15:16	02/08/12 16:30
LL_TB_020812	T120212-06	Water	02/08/12 00:00	02/08/12 16:30

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Plsia

Tustin CA, 92780

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Murex Project: Cenco
2640 Walnut Ave. Unit F Project Number: 1003-001-300

Reported: 02/13/12 15:43

LL_W7_020812_01 T120212-01 (Water)

Project Manager: Jeremy Squire

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable Petroleum	Hydrocarbons	by	v EPA 8015C

C6-C12 (GRO)	ND	50	ug/l	1	2020903	02/09/12	02/09/12	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		84.9 %	72.6-	146	"	"	"	"	
Volatile Organic Compounds by El	PA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	2020902	02/09/12	02/09/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	**	"	"	"	"	"	
Chloroethane	ND	1.0	**	"	"	"	"	"	
Chloroform	ND	1.0	**	"	"	"	"	"	
Chloromethane	ND	1.0	**	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	**	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	**	"	"	"	"	"	
Dibromochloromethane	ND	1.0	**	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	1.6	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/13/12 15:43

LL_W7_020812_01 T120212-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

SunStar Laboratories, Inc.											
Volatile Organic Compounds by	EPA Method 8260B	3									
1,2-Dichloropropane	ND	1.0	ug/l	1	2020902	02/09/12	02/09/12	EPA 8260B			
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"			
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"			
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"			
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"			
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"			
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"			
Isopropylbenzene	ND	1.0	"	"	"	"	"	"			
o-Isopropyltoluene	ND	1.0	"	"	"	"	"	"			
Methylene chloride	ND	1.0	"	"	"	"	"	"			
Naphthalene	ND	1.0	"	"	"	"	"	"			
n-Propylbenzene	ND	1.0	"	"	"	"	"	"			
Styrene	ND	1.0	"	"	"	"	"	"			
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"			
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"			
Tetrachloroethene	ND	1.0	"	"	"	"	"	"			
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"			
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"			
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"			
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"			
Γrichloroethene	ND	1.0	"	"	"	"	"	"			
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"			
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"			
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"			
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"			
Vinyl chloride	ND	1.0	"	"	"	"	"	"			
Benzene	ND	0.50	"	"	"	"	"	"			
Гoluene	ND	0.50	"	"	"	"	"	"			
Ethylbenzene	0.57	0.50	"	"	"	"	"	"			
n,p-Xylene	ND	1.0	"	"	"	"	"	"			
o-Xylene	0.59	0.50	"	"	"	"	"	"			
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/13/12 15:43

LL_W7_020812_01 T120212-01 (Water)

ı									
		Reporting							
ı	Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA	Method 8260B								
Tert-butyl alcohol	ND	10	ug/l	1	2020902	02/09/12	02/09/12	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		112 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		97.4 %	81-1	36	"	"	"	"	

88.8-117

99.9 %

SunStar Laboratories, Inc.

Surrogate: Toluene-d8

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Murex Project: Cenco

2640 Walnut Ave. Unit F Project Number: 1003-001-300 Reported: Tustin CA, 92780 Project Manager: Jeremy Squire 02/13/12 15:43

LL_W9_020812_01 T120212-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable Petroleum Hydrocarbons by EPA 8015C

C6-C12 (GRO)	59	50	ug/l	1	2020903	02/09/12	02/09/12	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		84.8 %	72.6-	146	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	2020902	02/09/12	02/09/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	1.8	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Plsia

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/13/12 15:43

LL_W9_020812_01 T120212-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	51	unstar La	iboratori	es, inc.					
Volatile Organic Compounds by E	EPA Method 8260B								
1,3-Dichloropropane	ND	1.0	ug/l	1	2020902	02/09/12	02/09/12	EPA 8260B	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	ND	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	ND	1.0	"	"	"	"	"	"	
n-Propylbenzene	ND	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	13	10	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/13/12 15:43

LL_W9_020812_01 T120212-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic	Compounds l	by EPA	Method 8260B

Di-isopropyl ether	ND	2.0	ug/l	1	2020902	02/09/12	02/09/12	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		122 %	83.5-	119	"	"	"	"	S-GC
Surrogate: Dibromofluoromethane		100 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		101 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit F Project Number: 1003-001-300 Reported: Tustin CA, 92780 Project Manager: Jeremy Squire 02/13/12 15:43

$LL_W10_020812_01$ T120212-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by FPA	8015C
Purgeable	Petroleum	пуштосатоонѕ	DVEPA	9015C

C6-C12 (GRO)	10000	50	ug/l	1	2020903	02/09/12	02/09/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		91.7 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by EP	A Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2020902	02/09/12	02/09/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	4.1	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	5.6	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Plsia

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/13/12 15:43

LL_W10_020812_01 T120212-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,3-Dichloropropane	ND	1.0	ug/l	1	2020902	02/09/12	02/09/12	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	24	1.0	"	"	"	"	"	"
p-Isopropyltoluene	1.7	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	130	5.0	"	5	"	"	"	"
n-Propylbenzene	28	1.0	"	1	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	12	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	73	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	3100	25	"	50	"	"	"	"
Гoluene	5.5	0.50	"	1	"	"	"	"
Ethylbenzene	230	2.5	"	5	"	"	"	"
m,p-Xylene	150	1.0	"	1	"	"	"	"
o-Xylene	2.9	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/13/12 15:43

LL_W10_020812_01 T120212-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

, same or game or same									
Ethyl tert-butyl ether	ND	2.0	ug/l	1	2020902	02/09/12	02/09/12	EPA 8260B	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		109 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		96.0 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		111 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit F Project Number: 1003-001-300 Reported: Tustin CA, 92780 Project Manager: Jeremy Squire 02/13/12 15:43

LL_W11_020812_01 T120212-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by FPA	8015C
Purgeable	Petroleum	пуштосатоонѕ	DVEPA	9015C

C6-C12 (GRO)	2900	50	ug/l	1	2020903	02/09/12	02/09/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		97.9 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by E	PA Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2020902	02/09/12	02/13/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	2.6	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	0.90	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	2.0	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/13/12 15:43

LL_W11_020812_01 T120212-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,3-Dichloropropane	ND	1.0	ug/l	1	2020902	02/09/12	02/13/12	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
eis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	1.9	1.0	"	"	"	"	"	"
o-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	2.7	1.0	"	"	"	"	"	"
n-Propylbenzene	2.0	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Γetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Γrichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	39	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	24	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	12	0.50	"	"	"	"	"	"
Гoluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	6.2	0.50	"	"	"	"	"	"
n,p-Xylene	50	1.0	"	"	"	"	"	"
o-Xylene	0.80	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/13/12 15:43

LL_W11_020812_01 T120212-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile	Organic	Compounds	hv EPA	Method 8260B
voiauic	Organic	Compounds	UYLLA	MICHIOU OZOOD

volutile of game compounds by Eli	I MICHIGA 0200B								
Ethyl tert-butyl ether	ND	2.0	ug/l	1	2020902	02/09/12	02/13/12	EPA 8260B	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	83.5-119		"	"	"	"	
Surrogate: Dibromofluoromethane		100 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		100 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Plsia

Murex Project: Cenco

400

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/13/12 15:43

LL_W12_020812_01 T120212-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

2020903

02/09/12

02/09/12

EPA 8015C

50

	Purgeable	Petroleum	Hydrocarbons	by EI	PA 8015C
--	-----------	-----------	---------------------	-------	----------

C6-C12 (GRO)

Surrogate: 4-Bromofluorobenzene	92.2 %	% 72.6-146		"	"	"	"			
Volatile Organic Compounds by EPA Method 8260B										
Bromobenzene ND	1.0	ug/l	1	2020902	02/09/12	02/09/12	EPA 8260B			
Bromochloromethane ND	1.0	"	"	"	"	"	"			
Bromodichloromethane ND	1.0	"	"	"	"	"	"			
Bromoform ND	1.0	"	"	"	"	"	"			
Bromomethane ND	1.0	"	"	"	"	"	"			
n-Butylbenzene 4.9	1.0	"	"	"	"	"	"			
sec-Butylbenzene 2.9	1.0	"	"	"	"	"	"			
tert-Butylbenzene ND	1.0	"	"	"	"	"	"			
Carbon tetrachloride ND	0.50	"	"	"	"	"	"			
Chlorobenzene ND	1.0	"	"	"	"	"	"			
Chloroethane ND	1.0	"	"	"	"	"	"			
Chloroform ND	1.0	"	"	"	"	"	"			
Chloromethane ND	1.0	"	"	"	"	"	"			
2-Chlorotoluene ND	1.0	"	"	"	"	"	"			
4-Chlorotoluene ND	1.0	"	"	"	"	"	"			
Dibromochloromethane ND	1.0	"	"	"	"	"	"			
1,2-Dibromo-3-chloropropane ND	1.0	"	"	"	"	"	"			
1,2-Dibromoethane (EDB) ND	1.0	"	"	"	"	"	"			
Dibromomethane ND	1.0	"	"	"	"	"	"			
1,2-Dichlorobenzene ND	1.0	"	"	"	"	"	"			
1,3-Dichlorobenzene ND	1.0	"	"	"	"	"	"			
1,4-Dichlorobenzene ND	1.0	"	"	"	"	"	"			
Dichlorodifluoromethane ND	0.50	"	"	"	"	"	"			
1,1-Dichloroethane ND	1.0	"	"	"	"	"	"			
1,2-Dichloroethane ND	0.50	"	"	"	"	"	"			
1,1-Dichloroethene ND	1.0	"	"	"	"	"	"			
cis-1,2-Dichloroethene 2.3	1.0	"	"	"	"	"	"			
trans-1,2-Dichloroethene ND	1.0	"	"	"	"	"	"			
1,2-Dichloropropane ND	1.0	"	"	"	"	"	"			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/13/12 15:43

LL_W12_020812_01 T120212-05 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,3-Dichloropropane	ND	1.0	ug/l	1	2020902	02/09/12	02/09/12	EPA 8260E
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	4.6	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Vaphthalene	1.6	1.0	"	"	"	"	"	"
-Propylbenzene	9.3	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	2.2	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	2.2	0.50	"	"	"	"	"	"
ı,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco 2640 Walnut Ave. Unit F Project Number: 1003-001-300 Reported: Tustin CA, 92780 Project Manager: Jeremy Squire 02/13/12 15:43

LL_W12_020812_01 T120212-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA			/1		2020002	00/00/40	00/00/40	ED 1 02 (0D
Di-isopropyl ether	ND	2.0	ug/l	1	2020902	02/09/12	02/09/12	EPA 8260B
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"
Surrogate: 4-Bromofluorobenzene		100 %	83.5-	119	"	"	"	"
Surrogate: Dibromofluoromethane		98.1 %	81-1	36	"	"	"	"
Surrogate: Toluene-d8		101 %	88.8-	117	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

evandy flsia

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/13/12 15:43

LL_TB_020812 T120212-06 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	S	SunStar La	iboratori	es, Inc.					
Volatile Organic Compounds by E	PA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	2020902	02/09/12	02/09/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/13/12 15:43

LL_TB_020812 T120212-06 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

eis-1,3-Dichloropropene	ND	0.50	ug/l	1	2020902	02/09/12	02/09/12	EPA 8260B
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
n-Propylbenzene	ND	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
/inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
Toluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
o-Xylene	ND	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco
2640 Walnut Ave. Unit F Project Number: 1003-001

2640 Walnut Ave. Unit F Project Number: 1003-001-300
Tustin CA, 92780 Project Manager: Jeremy Squire

Reported: 02/13/12 15:43

LL_TB_020812 T120212-06 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	2020902	02/09/12	02/09/12	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		110 %	83.5-119		"	"	"	"	
Surrogate: Dibromofluoromethane		99.2 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		100 %	88.8-117		"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsia

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/13/12 15:43

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2020903 - EPA 5030 GC										
Blank (2020903-BLK1)				Prepared	& Analyz	ed: 02/09/	12			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	81.5		"	100		81.5	72.6-146			
LCS (2020903-BS1)				Prepared	& Analyz	ed: 02/09/	12			
C6-C12 (GRO)	4980	50	ug/l	5500		90.5	75-125			
Surrogate 4-Bromofluorobenzene	92.1		"	100		92.1	72.6-146			
Matrix Spike (2020903-MS1)	Sou	ırce: T12021	2-01	Prepared	& Analyzo	ed: 02/09/	12			
C6-C12 (GRO)	4910	50	ug/l	5500	32.0	88.7	65-135			
Surrogate 4-Bromofluorobenzene	92.4		"	100		92.4	72.6-146			
Matrix Spike Dup (2020903-MSD1)	Sou	ırce: T12021	2-01	Prepared	& Analyz	ed: 02/09/	12			
C6-C12 (GRO)	4760	50	ug/l	5500	32.0	85.9	65-135	3.19	20	
Surrogate 4-Bromofluorobenzene	91.3		"	100		91.3	72.6-146			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/13/12 15:43

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2020902 - EPA 5030 GCMS										

Blank (2020902-BLK1)				Prepared & Analyzed: 02/09/12
Bromobenzene	ND	1.0	ug/l	
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
n-Butylbenzene	ND	1.0	"	
sec-Butylbenzene	ND	1.0	"	
tert-Butylbenzene	ND	1.0	"	
Carbon tetrachloride	ND	0.50	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
2-Chlorotoluene	ND	1.0	"	
4-Chlorotoluene	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	
Dibromomethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
Dichlorodifluoromethane	ND	0.50	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	0.50	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,3-Dichloropropane	ND	1.0	"	
2,2-Dichloropropane	ND	1.0	"	
1,1-Dichloropropene	ND	1.0	"	
cis-1,3-Dichloropropene	ND	0.50	"	
trans-1,3-Dichloropropene	ND	0.50	"	
Hexachlorobutadiene	ND	1.0	"	
Isopropylbenzene	ND	1.0	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/13/12 15:43

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2020902 - EPA 5030 GCMS										
DI 1 (202000 DI 1711)				ъ .	0 4 1	1 02/00/	1.0			

Blank (2020902-BLK1)				Prepared & Analyzed: 02/09/12
p-Isopropyltoluene	ND	1.0	ug/l	
Methylene chloride	ND	1.0	"	
Naphthalene	ND	1.0	"	
n-Propylbenzene	ND	1.0	"	
Styrene	ND	1.0	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	
Tetrachloroethene	ND	1.0	"	
1,2,3-Trichlorobenzene	ND	1.0	"	
1,2,4-Trichlorobenzene	ND	1.0	"	
1,1,2-Trichloroethane	ND	1.0	"	
1,1,1-Trichloroethane	ND	1.0	"	
Trichloroethene	ND	1.0	"	
Trichlorofluoromethane	ND	1.0	"	
1,2,3-Trichloropropane	ND	1.0	"	
1,3,5-Trimethylbenzene	ND	1.0	"	
1,2,4-Trimethylbenzene	ND	1.0	"	
Vinyl chloride	ND	1.0	"	
Benzene	ND	0.50	"	
Toluene	ND	0.50	"	
Ethylbenzene	ND	0.50	"	
m,p-Xylene	ND	1.0	"	
o-Xylene	ND	0.50	"	
Tert-amyl methyl ether	ND	2.0	"	
Tert-butyl alcohol	ND	10	"	
Di-isopropyl ether	ND	2.0	"	
Ethyl tert-butyl ether	ND	2.0	"	
Methyl tert-butyl ether	ND	1.0	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	
Surrogate 4-Bromofluorobenzene	8.94		"	8.00 112 83.5-119
Surrogate Dibromofluoromethane	7.91		"	8.00 98.9 81-136
Surrogate Toluene-d8	8.04		"	8.00 100 88.8-117

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/13/12 15:43

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2020902 - EPA 5030 GCMS										
LCS (2020902-BS1)				Prepared	& Analyze	ed: 02/09/	′12			
Chlorobenzene	21.9	1.0	ug/l	20.0		110	75-125			
1,1-Dichloroethene	21.4	1.0	"	20.0		107	75-125			
Trichloroethene	20.6	1.0	"	20.0		103	75-125			
Benzene	21.6	0.50	"	20.0		108	75-125			
Toluene	20.3	0.50	"	20.0		102	75-125			
Surrogate 4-Bromofluorobenzene	8.03		"	8.00		100	83.5-119			
Surrogate Dibromofluoromethane	8.02		"	8.00		100	81-136			
Surrogate Toluene-d8	7.88		"	8.00		98.5	88.8-117			
Matrix Spike (2020902-MS1)	So	urce: T12021	2-01	Prepared	& Analyze	ed: 02/09/	12			
Chlorobenzene	22.0	1.0	ug/l	20.0	ND	110	75-125			
1,1-Dichloroethene	20.8	1.0	"	20.0	ND	104	75-125			
Trichloroethene	20.5	1.0	"	20.0	ND	102	75-125			
Benzene	21.6	0.50	"	20.0	0.470	106	75-125			
Toluene	20.8	0.50	"	20.0	ND	104	75-125			
Surrogate 4-Bromofluorobenzene	8.06		"	8.00		101	83.5-119			
Surrogate Dibromofluoromethane	7.71		"	8.00		96.4	81-136			
Surrogate Toluene-d8	7.96		"	8.00		99.5	88.8-117			
Matrix Spike Dup (2020902-MSD1)	So	urce: T12021	2-01	Prepared	& Analyze	ed: 02/09/	12			
Chlorobenzene	22.1	1.0	ug/l	20.0	ND	110	75-125	0.454	20	
1,1-Dichloroethene	20.7	1.0	"	20.0	ND	104	75-125	0.481	20	
Trichloroethene	20.6	1.0	"	20.0	ND	103	75-125	0.390	20	
Benzene	21.8	0.50	"	20.0	0.470	107	75-125	1.01	20	
Toluene	21.0	0.50	"	20.0	ND	105	75-125	0.909	20	
Surrogate 4-Bromofluorobenzene	8.14		"	8.00		102	83.5-119			
Surrogate Dibromofluoromethane	7.87		"	8.00		98.4	81-136			
Surrogate Toluene-d8	8.14		"	8.00		102	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/13/12 15:43

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Chain of Custody Record

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Client: Murex Environmental, Inc.			Date:	2-8-20	12	_ Page:_	OF	_
Address: 2640 Walnut Ave, Unit F			Project Na	ame: CE	NCO	_		
Phone: <u>(714) 508-0800</u>	Fax: (714) 508-0880		Collector:	Frane Sosic		Client P	roject #: 1003-001-300	
Project Manager: Jeremy Squire (714)	604-5836		Batch #:	T120212		EDF #:_		
					1 1 1			
Relinquished by: (signature) Relinquished by: (signature) Relinquished by: (signature)	Date Time 2.8.2012 O300 IS46 O800 O800	Received by: (signat D	Date / Time 12 1630	Total # of contain Chain of Custody Seals intact? Y/N Received good condition/cold	seals	NOMON Total # of containers	Comments/Preservative Notes	90 % % % % % % % % % % % % % % % % % % %
Sample diaposal Instructional Diaposal @ \$2.00		to aliant Diaku		Turn around tir	ne:			

SAMPLE RECEIVING REVIEW SHEET

BATCH #			
Client Name: Murek Env. Pro	oject: CENC	5	
Received by: Dar	te/Time Received:	2-8-1	2/16:30
Delivered by: Client SunStar Courier GSO	FedEx Other		
Total number of coolers receivedO Temp crite	eria = 6°C > 0°C (no	<u>frozen</u>	containers)
Temperature: cooler #1 7.8 °C +/- the CF (-0.2°C) = 7.8	6 °C corrected temperat	ure	
cooler #2°C +/- the CF (- 0.2°C) =	°C corrected temperat	ure	
cooler #3°C +/- the CF (- 0.2°C) =	°C corrected temperat	ure	
Samples outside temp. but received on ice, w/in 6 hours of final s	sampling. Yes	□No	*
Custody Seals Intact on Cooler/Sample	□Yes	□No	* _N/A
Sample Containers Intact	∑Yes	□No	*
Sample labels match COC ID's	∑Yes	□No	*
Total number of containers received match COC	⅓Yes	□No	*
Proper containers received for analyses requested on COC	⊠Yes	□Nø	*
Proper preservative indicated on COC/containers for analyses req	quested \(\sum_{\text{Y}} \) Yes	□No	*
Complete shipment received in good condition with correct tempererevatives and within method specified holding times. Ye		abels, vo	olumes
* Complete Non-Conformance Receiving Sheet if checked Coole	er/Sample Review - Init	als and da	ate S2 2-11-12
Comments:	A. A. C.		
		-	
	1		

15 February 2012

Jeremy Squire Murex 2640 Walnut Ave. Unit F Tustin, CA 92780

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 02/10/12 15:45. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Wendy Hsiao For Daniel Chavez

Wordy Hsias

Project Manager

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/15/12 14:19

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_702_020912_01	T120233-01	Water	02/09/12 13:00	02/10/12 15:45
LL_702_020912_02	T120233-02	Water	02/09/12 13:13	02/10/12 15:45
LL_104A_020912_01	T120233-03	Water	02/09/12 15:36	02/10/12 15:45
LL_708_020912_01	T120233-04	Water	02/10/12 10:30	02/10/12 15:45
LL_709_020912_01	T120233-05	Water	02/10/12 12:00	02/10/12 15:45
LL_711_020912_01	T120233-06	Water	02/10/12 15:00	02/10/12 15:45
LL_TB_020912	T120233-07	Water	02/10/12 00:00	02/10/12 15:45

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/15/12 14:19

LL_702_020912_01 T120233-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

C6-C12 (GRO)	1400	50	ug/l	1	2021329	02/13/12	02/14/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		98.3 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by El	PA Method 8260	В						
Bromobenzene	ND	1.0	ug/l	1	2021323	02/13/12	02/13/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	2.2	1.0	"	"	"	"	"	"
ec-Butylbenzene	4.8	1.0	"	"	"	"	"	"
ert-Butylbenzene	1.3	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	5.0	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/15/12 14:19

LL_702_020912_01 T120233-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,2-Dichloropropane	12	1.0	ug/l	1	2021323	02/13/12	02/13/12	EPA 8260B
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
sis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	11	1.0	"	"	"	"	"	"
o-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	3.4	1.0	"	"	"	"	"	"
1-Propylbenzene	7.1	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	1.7	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	1.2	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	480	12	"	25	"	"	"	"
Гoluene	1.3	0.50	"	1	"	"	"	"
Ethylbenzene	0.65	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
o-Xylene	ND	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	ND	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/15/12 14:19

LL_702_020912_01 T120233-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

volatile Organic Compounds by El A	Mictilou 02001	,							
Di-isopropyl ether	ND	2.0	ug/l	1	2021323	02/13/12	02/13/12	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		124 %	83.5-	119	"	"	"	"	S-GC
Surrogate: Dibromofluoromethane		93.1 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		100 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

02/14/12 EPA 8015C

Murex Project: Cenco

1500

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/15/12 14:19

LL_702_020912_02 T120233-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

2021329 02/13/12

50

Purgeable Petroleum Hydrocarbons by EPA 8015C

C6-C12 (GRO)

CU-C12 (GRO)	1300	50	ug/1		2021327	02/13/12	02/17/12	LI A 0015C	
Surrogate: 4-Bromofluorobenzene		98.3 %	72.6-	146	"	"	"	"	
Volatile Organic Compounds by E.	PA Method 8260	В							
Bromobenzene	ND	1.0	ug/l	1	2021323	02/13/12	02/13/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	2.4	1.0	"	"	"	"	"	"	
sec-Butylbenzene	5.1	1.0	"	"	"	"	"	"	
tert-Butylbenzene	1.3	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	5.4	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	12	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/15/12 14:19

LL_702_020912_02 T120233-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	2	sunstar La	iboratori	es, mc.				
Volatile Organic Compounds by I	EPA Method 8260B	3						
1,3-Dichloropropane	ND	1.0	ug/l	1	2021323	02/13/12	02/13/12	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	m .
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	13	1.0	"	"	"	"	"	"
o-Isopropyltoluene	ND	1.0	"	"	"	"	"	m .
Methylene chloride	ND	1.0	"	"	"	"	"	m .
Naphthalene	3.3	1.0	"	"	"	"	"	"
1-Propylbenzene	7.7	1.0	"	"	"	"	"	m .
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	1.4	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	m .
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	1.3	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	470	12	"	25	"	"	"	"
Гoluene	1.3	0.50	"	1	"	"	"	"
Ethylbenzene	0.71	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
o-Xylene	ND	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Fert-butyl alcohol	ND	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsias

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/15/12 14:19

LL_702_020912_02 T120233-02 (Water)

	Re	porting							
Analyte	esult	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic	Compounds b	y EPA	Method 8260B

Di-isopropyl ether	ND	2.0	ug/l	1	2021323	02/13/12	02/13/12	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		127 %	83.5-	119	"	"	"	"	S-GC
Surrogate: Dibromofluoromethane		98.2 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		99.1 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit F Project Number: 1003-001-300 Reported: Tustin CA, 92780 Project Manager: Jeremy Squire 02/15/12 14:19

LL_104A_020912_01 T120233-03 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by FPA	8015C
Purgeable	Petroleum	пуштосатоонѕ	DVEPA	9015C

C6-C12 (GRO)	ND	50	ug/l	1	2021329	02/13/12	02/14/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		90.8 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by E	PA Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2021323	02/13/12	02/13/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	**	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	**	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	3.8	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/15/12 14:19

LL_104A_020912_01 T120233-03 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	S	unStar La	aboratori	es, Inc.				
Volatile Organic Compounds by 	EPA Method 8260B							
1,2-Dichloropropane	ND	1.0	ug/l	1	2021323	02/13/12	02/13/12	EPA 8260B
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	ND	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
n-Propylbenzene	ND	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
Toluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	ND	0.50	"	"	"	"	"	"
m,p-Xylene	ND	1.0	"	"	"	"	"	"
o-Xylene	ND	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
•								

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wardy Flsias

Murex Project: Cenco
2640 Walnut Ave. Unit F Project Number: 1003-001-300

2640 Walnut Ave. Unit FProject Number: 1003-001-300Tustin CA, 92780Project Manager: Jeremy Squire

Reported: 02/15/12 14:19

LL_104A_020912_01 T120233-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	Volatile Organic	Compounds by	y EPA Method 8260B
--	-------------------------	--------------	--------------------

Tert-butyl alcohol	ND	10	ug/l	1	2021323	02/13/12	02/13/12	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		109 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		92.9 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		97.4 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

18000

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/15/12 14:19

LL_708_020912_01 T120233-04 (Water)

Reporting
Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Note.

SunStar Laboratories, Inc.

ug/l

2021329

02/13/12

02/14/12

EPA 8015C

50

Purgeable Petroleum Hydrocarbons by EPA 8015C

C6-C12 (GRO)

No	20 212 (3113)	20000	20	~B/ 1	•	2021027	02/12/12	02/1 //12	Billouice	
Bromoblenzene ND 1.0 ug/l 1 2021323 02/13/12 02/13/12 EPA 8260B Bromochloromethane ND 1.0 "	Surrogate: 4-Bromofluorobenzene		108 %	72.6-	146	"	"	"	"	
Bromochloromethane ND 1.0 "	Volatile Organic Compounds by E	EPA Method 8260B								
Bromodichloromethane ND 1.0 " " " " " " " " "	Bromobenzene	ND	1.0	ug/l	1	2021323	02/13/12	02/13/12	EPA 8260B	
Bromoform ND 1.0 " " " " " " " " "	Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromomethane ND 1.0 " " " " " " " " "	Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
No. No.	Bromoform	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene 22 1.0 "	Bromomethane	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	n-Butylbenzene	25	1.0	"	"	"	"	"	"	
Carbon etrachloride ND 0.50 "	sec-Butylbenzene	22	1.0	"	"	"	"	"	"	
Chlorobenzene ND 1.0 "	tert-Butylbenzene	2.4	1.0	"	"	"	"	"	"	
Chloroethane ND 1.0 "	Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chloroform ND 1.0 " " " " " " " " " " " " " " " " " " "	Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloromethane ND 1.0 "	Chloroethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene ND 1.0 " " " " " " " " " " " " " " " " " " "	Chloroform	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene ND 1.0 " " " " " " " " " " " " " " " " " " "	Chloromethane	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane ND 1.0 " " " " " " " " " " " " 1.2-Dibromochloromethane (EDB) ND 1.0 " " " " " " " " " " " " " " " " " " "	2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane ND 1.0 " " " " " " " " " " " " " " 1,2-Dibromoethane (EDB) ND 1.0 " " " " " " " " " " " " " " " " " " "	4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB) ND 1.0 "	Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
Dibromomethane ND 1.0 "	1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene ND 1.0 " <td>1,2-Dibromoethane (EDB)</td> <td>ND</td> <td>1.0</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene ND 1.0 " <td>Dibromomethane</td> <td>ND</td> <td>1.0</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene ND 1.0 " <td>1,2-Dichlorobenzene</td> <td>ND</td> <td>1.0</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane ND 0.50 "<	1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethane ND 1.0 "	1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane ND 0.50 " <td>Dichlorodifluoromethane</td> <td>ND</td> <td>0.50</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,2-Dichloroethane ND 0.50 " <td>1,1-Dichloroethane</td> <td>ND</td> <td>1.0</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethene ND 1.0 "	-			"	"	"	"	"	"	
cis-1,2-Dichloroethene ND 1.0 " " " " " " " " " " " " " " " " " " "	-	ND		"	"	"	"	"	"	
trans-1,2-Dichloroethene ND 1.0 " " " " " "	-			"	"	"	"	"	"	
				"	"	"	"	"	"	
				"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/15/12 14:19

LL_708_020912_01 T120233-04 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,3-Dichloropropane	ND	1.0	ug/l	1	2021323	02/13/12	02/13/12	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	100	1.0	"	"	"	"	"	"
p-Isopropyltoluene	22	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	170	10	"	10	"	"	"	"
n-Propylbenzene	180	10	"	"	"	"	"	"
Styrene	ND	1.0	"	1	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Γetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Γrichloroethene	ND	1.0	"	"	"	"	"	"
Γrichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	410	10	"	10	"	"	"	"
1,2,4-Trimethylbenzene	1100	10	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	1	"	"	"	"
Benzene	1700	12	"	25	"	"	"	"
Гoluene	74	0.50	"	1	"	"	"	"
Ethylbenzene	770	5.0	"	10	"	"	"	"
m,p-Xylene	1000	10	"	"	"	"	"	"
o-Xylene	38	0.50	"	1	"	"	"	"
Γert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/15/12 14:19

LL_708_020912_01 T120233-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile	Organic	Compounds	hy EPA	Method 8260B	
voiauic	Organic	Compounds	DYELA	MICHIOU OZOOD	

Ethyl tert-butyl ether	ND	2.0	ug/l	1	2021323	02/13/12	02/13/12	EPA 8260B	
Methyl tert-butyl ether	830	10	"	10	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	1	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		95.9 %	81-1	136	"	"	"	"	
Surrogate: Toluene-d8		98.5 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

760

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/15/12 14:19

LL_709_020912_01 T120233-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

2021329

02/13/12

02/14/12

EPA 8015C

50

Purgeable	Petroleum	Hydrocarbons	by	EPA	8015C

C6-C12 (GRO)

tile Organic Compounds by EPA Method 8260B obenzene ochloromethane odichloromethane ofform omethane omethane other by the number of the street of the stree	1.0 1.0 1.0 1.0 1.0	ug/l "	1 "	2021323	02/13/12	02/13/12	EPA 8260B
ochloromethane odichloromethane odichloromethane ofform ND omethane omethane ND optorm ND omethane outylbenzene outylbenzene outylbenzene outylbenzene outylbenzene outylbenzene outylbenzene outylbenzene ND	1.0 1.0 1.0 1.0	"	"				EPA 8260B
odichloromethane oform ND omethane ND ylbenzene cutylbenzene futylbenzene n tetrachloride ND ND ND ND ND ND ND	1.0 1.0 1.0	"		"			
oform ND omethane ND ylbenzene 2.1 utylbenzene 6.2 tutylbenzene 1.1 n tetrachloride ND	1.0 1.0					"	"
omethane ND ylbenzene 2.1 utylbenzene 6.2 utylbenzene 1.1 n tetrachloride ND	1.0	,,	"	"	"	"	"
ylbenzene 2.1 utylbenzene 6.2 utylbenzene 1.1 n tetrachloride ND			"	"	"	"	"
tutylbenzene 6.2 tutylbenzene 1.1 n tetrachloride ND	1.0	"	"	"	"	"	"
n tetrachloride 1.1	1.0	"	"	"	"	"	"
n tetrachloride ND	1.0	"	"	"	"	"	"
	1.0	"	"	"	"	"	"
obenzene ND	0.50	"	"	"	"	"	"
	1.0	"	"	"	"	"	"
oethane ND	1.0	"	"	"	"	"	"
oform ND	1.0	"	"	"	"	"	"
omethane ND	1.0	"	"	"	"	"	"
orotoluene ND	1.0	"	"	"	"	"	"
orotoluene ND	1.0	"	"	"	"	"	"
mochloromethane ND	1.0	"	"	"	"	"	"
ibromo-3-chloropropane ND	1.0	"	"	"	"	"	"
ibromoethane (EDB) ND	1.0	"	"	"	"	"	"
momethane ND	1.0	"	"	"	"	"	"
ichlorobenzene ND	1.0	"	"	"	"	"	"
ichlorobenzene ND	1.0	"	"	"	"	"	"
ichlorobenzene ND	1.0	"	"	"	"	"	"
orodifluoromethane ND	0.50	"	"	"	"	"	"
ichloroethane ND	1.0	"	"	"	"	"	"
ichloroethane ND	0.50	"	"	"	"	"	"
ichloroethene ND	1.0	"	"	"	"	"	"
2-Dichloroethene ND							
1,2-Dichloroethene ND	1.0	"	"	"	"	"	"
ichloropropane ND	1.0 1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/15/12 14:19

LL_709_020912_01 T120233-05 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,3-Dichloropropane	ND	1.0	ug/l	1	2021323	02/13/12	02/13/12	EPA 8260E
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	33	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Japhthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	28	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	180	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsias

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/15/12 14:19

LL_709_020912_01 T120233-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA	Method 8260B							
Di-isopropyl ether	ND	2.0	ug/l	1	2021323	02/13/12	02/13/12	EPA 8260B
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	4.4	1.0	"	"	"	"	"	"
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	**
Surrogate: 4-Bromofluorobenzene		104 %	83.5-	119	"	"	"	"
Surrogate: Dibromofluoromethane		99.2 %	81-1	36	"	"	"	"

88.8-117

102 %

SunStar Laboratories, Inc.

Surrogate: Toluene-d8

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

23000

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/15/12 14:19

LL_711_020912_01 T120233-06 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

11σ/1

2021329 02/13/12

02/14/12

FPA 8015C

50

Durgooblo	Dotroloum	Hydrocarbons	by FDA	2015C
Purgeable	Petroleum	Hydrocarbons	DVEPA	るひょうし

C6-C12 (GRO)

C6-C12 (GRO)	23000	50	ug/I	1	2021329	02/13/12	02/14/12	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		97.5 %	72.6-	146	"	"	"	"	
Volatile Organic Compounds by 1	EPA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	2021323	02/13/12	02/13/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	46	1.0	"	"	"	"	"	"	
sec-Butylbenzene	20	1.0	"	"	"	"	"	"	
tert-Butylbenzene	2.7	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
, 1 1									

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/15/12 14:19

LL_711_020912_01 T120233-06 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,3-Dichloropropane	ND	1.0	ug/l	1	2021323	02/13/12	02/13/12	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	130	10	"	10	"	"	"	"
p-Isopropyltoluene	3.2	1.0	"	1	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	360	10	"	10	"	"	"	"
n-Propylbenzene	210	10	"	"	"	"	"	"
Styrene	ND	1.0	"	1	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	150	10	"	10	"	"	"	"
,2,4-Trimethylbenzene	480	10	"	"	"	"	"	"
/inyl chloride	ND	1.0	"	1	"	"	"	"
Benzene	1900	12	"	25	"	"	"	"
Toluene	2100	12	"	"	"	"	"	"
Ethylbenzene	440	5.0	"	10	"	"	"	"
n,p-Xylene	1800	10	"	"	"	"	"	"
o-Xylene	770	5.0	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	1	"	"	"	"
Tert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/15/12 14:19

LL_711_020912_01 T120233-06 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Ethyl tert-butyl ether	ND	2.0	ug/l	1	2021323	02/13/12	02/13/12	EPA 8260B	
Methyl tert-butyl ether	14	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.2 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		91.2 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		101 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/15/12 14:19

LL_TB_020912 T120233-07 (Water)

ı									
		Reporting							
ı	Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Bromobenzene	ND	1.0	ug/l	1	2021323	02/13/12	02/14/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/15/12 14:19

LL_TB_020912 T120233-07 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

is-1,3-Dichloropropene	ND	0.50	ug/l	1	2021323	02/13/12	02/14/12	EPA 8260E
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
thyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsias

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/15/12 14:19

LL_TB_020912 T120233-07 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	2021323	02/13/12	02/14/12	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		111 %	83.5-119)	"	"	"	"	
Surrogate: Dibromofluoromethane		90.5 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		101 %	88.8-117	7	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/15/12 14:19

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2021329 - EPA 5030 GC										
Blank (2021329-BLK1)				Prepared:	: 02/13/12	Analyze	d: 02/14/12			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	85.7		"	100		85.7	72.6-146			
LCS (2021329-BS1)				Prepared:	: 02/13/12	Analyze	d: 02/14/12			
C6-C12 (GRO)	4860	50	ug/l	5500		88.3	75-125			
Surrogate 4-Bromofluorobenzene	95.1		"	100		95.1	72.6-146			
Matrix Spike (2021329-MS1)	Sou	rce: T12023	2-01	Prepared:	: 02/13/12	Analyze	d: 02/14/12			
C6-C12 (GRO)	5450	50	ug/l	5500	2830	47.5	65-135			QM-07
Surrogate 4-Bromofluorobenzene	97.6		"	100		97.6	72.6-146			
Matrix Spike Dup (2021329-MSD1) Source: T120232-01				Prepared: 02/13/12 Analyzed: 02/14/12						
C6-C12 (GRO)	5410	50	ug/l	5500	2830	46.8	65-135	0.698	20	QM-07
Surrogate 4-Bromofluorobenzene	97.9		"	100		97.9	72.6-146			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/15/12 14:19

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (2021323-BLK1)		
Bromobenzene ND	1.0	ug/l
Bromochloromethane ND	1.0	"
Bromodichloromethane ND	1.0	"
Bromoform ND	1.0	"
Bromomethane ND	1.0	"
n-Butylbenzene ND	1.0	"
sec-Butylbenzene ND	1.0	"
tert-Butylbenzene ND	1.0	"
Carbon tetrachloride ND	0.50	"
Chlorobenzene ND	1.0	"
Chloroethane ND	1.0	"
Chloroform ND	1.0	"
Chloromethane ND	1.0	"
2-Chlorotoluene ND	1.0	"
4-Chlorotoluene ND	1.0	"
Dibromochloromethane ND	1.0	"
1,2-Dibromo-3-chloropropane ND	1.0	"
1,2-Dibromoethane (EDB) ND	1.0	"
Dibromomethane ND	1.0	"
1,2-Dichlorobenzene ND	1.0	"
1,3-Dichlorobenzene ND	1.0	,,
1,4-Dichlorobenzene ND	1.0	,,
Dichlorodifluoromethane ND	0.50	,,
1,1-Dichloroethane ND	1.0	,,
1,1-Dichloroethane ND	0.50	,,
	1.0	,,
1,1-Dichloroethene ND		.,
cis-1,2-Dichloroethene ND	1.0	"
trans-1,2-Dichloroethene ND	1.0	
1,2-Dichloropropane ND	1.0	"
1,3-Dichloropropane ND	1.0	"
2,2-Dichloropropane ND	1.0	"
1,1-Dichloropropene ND	1.0	"
cis-1,3-Dichloropropene ND	0.50	"
trans-1,3-Dichloropropene ND	0.50	"
Hexachlorobutadiene ND	1.0	"
Isopropylbenzene ND	1.0	"
opropyloenzene	1.0	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/15/12 14:19

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte Batch 2021323 - EPA 5030 GCMS	Result	Limit	Units	Level	Resuit	70KEC	LIIIIIIS	KPD	LIIIII	Notes
Anglyta	Result	Reporting	Unite	Spike	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes

Blank (2021323-BLK1)				Prepared & An	alyzed: 02/13	/12	
p-Isopropyltoluene	ND	1.0	ug/l				
Methylene chloride	ND	1.0	"				
Naphthalene	ND	1.0	"				
n-Propylbenzene	ND	1.0	"				
Styrene	ND	1.0	"				
1,1,2,2-Tetrachloroethane	ND	1.0	"				
1,1,1,2-Tetrachloroethane	ND	1.0	"				
Tetrachloroethene	ND	1.0	"				
1,2,3-Trichlorobenzene	ND	1.0	"				
1,2,4-Trichlorobenzene	ND	1.0	"				
1,1,2-Trichloroethane	ND	1.0	"				
1,1,1-Trichloroethane	ND	1.0	"				
Trichloroethene	ND	1.0	"				
Trichlorofluoromethane	ND	1.0	"				
1,2,3-Trichloropropane	ND	1.0	"				
1,3,5-Trimethylbenzene	ND	1.0	"				
1,2,4-Trimethylbenzene	ND	1.0	"				
Vinyl chloride	ND	1.0	"				
Benzene	ND	0.50	"				
Toluene	ND	0.50	"				
Ethylbenzene	ND	0.50	"				
m,p-Xylene	ND	1.0	"				
o-Xylene	ND	0.50	"				
Tert-amyl methyl ether	ND	2.0	"				
Tert-butyl alcohol	ND	10	"				
Di-isopropyl ether	ND	2.0	"				
Ethyl tert-butyl ether	ND	2.0	"				
Methyl tert-butyl ether	ND	1.0	"				
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"				
Surrogate 4-Bromofluorobenzene	8.81		"	8.00	110	83.5-119	
Surrogate Dibromofluoromethane	7.23		"	8.00	90.4	81-136	
Surrogate Toluene-d8	7.99		"	8.00	99.9	88.8-117	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/15/12 14:19

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2021323 - EPA 5030 GCMS										
LCS (2021323-BS1)				Prepared:	02/13/12	Analyzed	d: 02/14/12			
Chlorobenzene	24.7	1.0	ug/l	20.0		123	75-125			
1,1-Dichloroethene	19.9	1.0	"	20.0		99.6	75-125			
Trichloroethene	20.6	1.0	"	20.0		103	75-125			
Benzene	20.9	0.50	"	20.0		104	75-125			
Toluene	20.1	0.50	"	20.0		101	75-125			
Surrogate 4-Bromofluorobenzene	7.94		"	8.00		99.2	83.5-119			
Surrogate Dibromofluoromethane	8.46		"	8.00		106	81-136			
Surrogate Toluene-d8	7.24		"	8.00		90.5	88.8-117			
Matrix Spike (2021323-MS1)	So	urce: T12023	32-01	Prepared:	02/13/12	Analyzed	d: 02/14/12			
Chlorobenzene	24.8	1.0	ug/l	20.0	ND	124	75-125			
1,1-Dichloroethene	19.1	1.0	"	20.0	ND	95.6	75-125			
Trichloroethene	22.0	1.0	"	20.0	ND	110	75-125			
Benzene	21.6	0.50	"	20.0	0.550	105	75-125			
Toluene	23.1	0.50	"	20.0	1.84	106	75-125			
Surrogate 4-Bromofluorobenzene	8.88		"	8.00		111	83.5-119			
Surrogate Dibromofluoromethane	7.94		"	8.00		99.2	81-136			
Surrogate Toluene-d8	7.26		"	8.00		90.8	88.8-117			
Matrix Spike Dup (2021323-MSD1)	So	urce: T12023	32-01	Prepared:	02/13/12	Analyzed	d: 02/14/12			
Chlorobenzene	23.0	1.0	ug/l	20.0	ND	115	75-125	7.69	20	
1,1-Dichloroethene	18.4	1.0	"	20.0	ND	91.9	75-125	3.95	20	
Trichloroethene	20.4	1.0	"	20.0	ND	102	75-125	7.22	20	
Benzene	20.0	0.50	"	20.0	0.550	97.0	75-125	7.99	20	
Toluene	22.0	0.50	"	20.0	1.84	101	75-125	4.88	20	
Surrogate 4-Bromofluorobenzene	8.30		"	8.00		104	83.5-119			
Surrogate Dibromofluoromethane	8.12		"	8.00		102	81-136			
Surrogate Toluene-d8	7.45		"	8.00		93.1	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/15/12 14:19

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

QM-07 The spike recovery and or RPD was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable

LCS recovery.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Chain of Custody Record

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Client: Murex Environmental, Inc.							Date: Project 1				CEN			Page	e:	_OF/	_
Address: 2640 Walnut Ave, Unit F	F (744) F0	0.000					Collecto					<u> </u>		- Clioni	Drainat #	1002 001 200	
	Fax: (714) 50	8-0880														1003-001-300	
Project Manager: <u>Jeremy Squire</u> (714	604-5836					E	Batch #		1120	223	-3			_EDF ;	Ŧ:		-
	T							\Box									
Sample ID LL_702_020912_01 LL_702_020912_02 LL_104A_020912_01 LL_708_021012_01 LL_709_021012_01 LL_711_021012_01 LL_TIS_021012	Date Sampled 2.9.2012 2.9.2012 2.9.2012 2.10.2012 2.10.2012	Time [300 [313 [536 [030 [200 [500	Sample Type GW GW GW GW GW Water	ХХХХТРН9 (8015	X									NOON NONTotal # of containers	Comme	nts/Preservative	29 99 99 Paperatory ID #
				+		\dashv		\neg	+	+ +		+	<u> </u>				\neg
	-					\dashv			+	1 1	\top						
Relinquished by (signature)	Date / Tir	me	Received b	y: (si	gnat	Ate	/ Time	12 To	otal#	of cont	ainers	3		38		Notes	
F.Sosic	2.10.2012	1545		1	The	>	15:4	5 CI	hain o	f Custo	ody se	als					
Relinquished by: (signature)	Date / Tir	me	Received b	y: (si	gnat [Date	/ Time			tact?	_						
	,							R	eceive	ed good	d						
Relinquished by: (signature)	Date / Tir	me	Received b	y: (si	gnat l	Date	/ Time		onditio	n/cold			2.	8			
								 T.	ırn ə	round	time						
Sample disposal Instructions: Disposal @ \$2.		Return to	client		Picku	JD QL			arii ai	Junu		•					

SAMPLE RECEIVING REVIEW SHEET

BATCH # 7120233			
Client Name: Mukex Env. Project:	Con	0	
Received by: Date/Time	me Received:	2-10	-12/15:45
Delivered by: Client SunStar Courier GSO Fe	edEx Other		
Total number of coolers receivedO Temp criteria =	= 6°C > 0°C (no	frozen co	ontainers)
Temperature: cooler #1 3.0 °C +/- the CF (-0.2°C) = 2.8 °C	corrected temperat	are	
cooler #2°C +/- the CF (- 0.2°C) =°C	corrected temperat	ure	
cooler #3°C +/- the CF (- 0.2°C) =°C	corrected temperat	ure	
Samples outside temp. but received on ice, w/in 6 hours of final sample	ling. XYes	□No*	□N/A
Custody Seals Intact on Cooler/Sample	∐Yes	□No*	⊠N/A
Sample Containers Intact	⊠Yes	□No*	
Sample labels match COC ID's	∑Yes	□No*	
Total number of containers received match COC	⊠Yes	□No*	
Proper containers received for analyses requested on COC	⊠Yes	□N•*	
Proper preservative indicated on COC/containers for analyses requeste	ed ⊠Yes	□No*	□N/A
Complete shipment received in good condition with correct temperature preservatives and within method specified holding times. Yes		abels, vol	umes
* Complete Non-Conformance Receiving Sheet if checked Cooler/San	nple Review - Initi	als and dat	e
Comments:			

16 February 2012

Jeremy Squire Murex 2640 Walnut Ave. Unit F Tustin, CA 92780

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 02/13/12 16:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Wendy Hsiao For Daniel Chavez

Wordy Hsias

Project Manager

Murex Project: Cenco

2640 Walnut Ave. Unit F Project Number: 1003-001-300
Tustin CA, 92780 Project Manager: Jeremy Squire

Reported: 02/16/12 16:58

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_712_021312_01	T120241-01	Water	02/13/12 10:35	02/13/12 16:30
LL_713_021312_01	T120241-02	Water	02/13/12 12:23	02/13/12 16:30
LL_714_021312_01	T120241-03	Water	02/13/12 15:40	02/13/12 16:30
LL_714_021312_02	T120241-04	Water	02/13/12 15:46	02/13/12 16:30
LL_TB_021312	T120241-05	Water	02/13/12 00:00	02/13/12 16:30

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/16/12 16:58

LL_712_021312_01 T120241-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

C6-C12 (GRO)	8300	50	ug/l	1	2021415	02/14/12	02/15/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		109 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by E	CPA Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2021414	02/14/12	02/14/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	16	1.0	"	"	"	"	"	"
sec-Butylbenzene	15	1.0	"	"	"	"	"	"
tert-Butylbenzene	2.4	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	4.9	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	3.4	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsia

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/16/12 16:58

LL_712_021312_01 T120241-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,2-Dichloropropane	ND	1.0	ug/l	1	2021414	02/14/12	02/14/12	EPA 8260B
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	76	1.0	"	"	"	"	"	"
p-Isopropyltoluene	3.9	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	24	1.0	"	"	"	"	"	"
n-Propylbenzene	79	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Гetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Γrichloroethene	ND	1.0	"	"	"	"	"	"
Γrichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	44	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	86	1.0	"	"	"	"	"	"
Vinyl chloride	1.7	1.0	"	"	"	"	"	"
Benzene	850	12	"	25	"	"	"	"
Гoluene	57	0.50	"	1	"	"	"	"
Ethylbenzene	62	0.50	"	"	"	"	"	"
n,p-Xylene	180	1.0	"	"	"	"	"	"
o-Xylene	46	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	94	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/16/12 16:58

LL_712_021312_01 T120241-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EF	A Method 8260B								
Di-isopropyl ether	ND	2.0	ug/l	1	2021414	02/14/12	02/14/12	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	21	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.5 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		97.0 %	81-1	36	"	"	"	"	

105 %

88.8-117

SunStar Laboratories, Inc.

Surrogate: Toluene-d8

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsia

Murex Project: Cenco

2640 Walnut Ave. Unit F Project Number: 1003-001-300 Reported: Tustin CA, 92780 Project Manager: Jeremy Squire 02/16/12 16:58

LL_713_021312_01 T120241-02 (Water)

Reporting Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Note

SunStar Laboratories, Inc.

Purgeable	Petroleum H	lydrocarbons	by	EPA 8015C

C6-C12 (GRO)	5500	50	ug/l	1	2021415	02/14/12	02/15/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		102 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by EPA	Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2021414	02/14/12	02/15/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	4.7	1.0	"	"	"	"	"	"
sec-Butylbenzene	6.4	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	3.1	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/16/12 16:58

LL_713_021312_01 T120241-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,3-Dichloropropane	ND	1.0	ug/l	1	2021414	02/14/12	02/15/12	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	46	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
n-Propylbenzene	65	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	1.6	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	1900	12	"	25	"	"	"	"
Toluene	2.2	0.50	"	1	"	"	"	"
Ethylbenzene	4.6	0.50	"	"	"	"	"	"
m,p-Xylene	9.8	1.0	"	"	"	"	"	"
o-Xylene	2.5	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	160	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/16/12 16:58

LL_713_021312_01 T120241-02 (Water)

	Re	porting							
Analyte	esult	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

, 01000110 01 8011110 0 011110 0 0 0 0 0									
Ethyl tert-butyl ether	ND	2.0	ug/l	1	2021414	02/14/12	02/15/12	EPA 8260B	
Methyl tert-butyl ether	390	5.0	"	5	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	1	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		110 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		95.6 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		102 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit F Project Number: 1003-001-300 Reported: Tustin CA, 92780 Project Manager: Jeremy Squire 02/16/12 16:58

LL_714_021312_01 T120241-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by FPA	8015C
Purgeable	Petroleum	пуштосатоонѕ	DVEPA	9015C

C6-C12 (GRO)	760	50	ug/l	1	2021415	02/14/12	02/15/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		104 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by EP	A Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2021414	02/14/12	02/15/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	3.4	1.0	"	"	"	"	"	"
tert-Butylbenzene	1.1	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	3.2	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	11
Dibromomethane	ND	1.0	"	"	"	"	"	11
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	11
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	11
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/16/12 16:58

LL_714_021312_01 T120241-03 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,3-Dichloropropane	ND	1.0	ug/l	1	2021414	02/14/12	02/15/12	EPA 8260E
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	14	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
1ethylene chloride	ND	1.0	"	"	"	"	"	"
Japhthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	6.5	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
Senzene	3.9	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
ı,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	23	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsias

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/16/12 16:58

LL_714_021312_01 T120241-03 (Water)

ı									
		Reporting							
ı	Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA								
Di-isopropyl ether	ND	2.0	ug/l	1	2021414	02/14/12	02/15/12	EPA 8260B
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	7.1	1.0	"	"	"	"	"	"
1,1,2-trichloro-1,2,2-trifluoroethane	ND	5.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit F Project Number: 1003-001-300 Reported: Tustin CA, 92780 Project Manager: Jeremy Squire 02/16/12 16:58

LL_714_021312_02 T120241-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by FPA	8015C
Purgeable	Petroleum	пуштосатоонѕ	DVEPA	9015C

C6-C12 (GRO)	730	50	ug/l	1	2021415	02/14/12	02/15/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		107 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by EPA M	Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2021414	02/14/12	02/14/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	3.8	1.0	"	"	"	"	"	"
tert-Butylbenzene	1.2	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	3.8	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/16/12 16:58

LL_714_021312_02 T120241-04 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	2	sunstar La	iboratori	es, inc.				
Volatile Organic Compounds by	EPA Method 8260B	}						
1,3-Dichloropropane	ND	1.0	ug/l	1	2021414	02/14/12	02/14/12	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	m .
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	m .
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	II .
Isopropylbenzene	15	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	m .
Methylene chloride	ND	1.0	"	"	"	"	"	m .
Naphthalene	ND	1.0	"	"	"	"	"	m .
n-Propylbenzene	7.3	1.0	"	"	"	"	"	m .
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Γetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	m .
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	m .
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	m .
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	II .
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	5.0	0.50	"	"	"	"	"	"
Гoluene	0.72	0.50	"	"	"	"	"	"
Ethylbenzene	ND	0.50	"	"	"	"	"	"
m,p-Xylene	1.1	1.0	"	"	"	"	"	"
o-Xylene	ND	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	29	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsias

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/16/12 16:58

LL_714_021312_02 T120241-04 (Water)

	Re	porting							
Analyte	esult	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B										
Di-isopropyl ether	ND	2.0	ug/l	1	2021414	02/14/12	02/14/12	EPA 8260B		
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"		
Methyl tert-butyl ether	8.4	1.0	"	"	"	"	"	"		
1,1,2-trichloro-1,2,2-trifluoroethane	ND	5.0	"	"	"	"	"	"		

 1,1,2-trichloro-1,2,2-trifluoroethane
 ND
 5.0
 " " " " " " " " "

 (CFC 113)
 Surrogate: 4-Bromofluorobenzene
 112 % 83.5-119 " " " " " "

 Surrogate: Dibromofluoromethane
 98.8 % 81-136 " " " " " "

 Surrogate: Toluene-d8
 103 % 88.8-117 " " " " "

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/16/12 16:58

LL_TB_021312 T120241-05 (Water)

	Re	porting							
Analyte	esult	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Bromobenzene	ND	1.0	ug/l	1	2021414	02/14/12	02/14/12	EPA 8260E
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/16/12 16:58

LL_TB_021312 T120241-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

is-1,3-Dichloropropene	ND	0.50	ug/l	1	2021414	02/14/12	02/14/12	EPA 8260E
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Vaphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsias

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/16/12 16:58

LL_TB_021312 T120241-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	2021414	02/14/12	02/14/12	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		110 %	83.5-119)	"	"	"	"	
Surrogate: Dibromofluoromethane		99.5 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		103 %	88.8-117	,	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit F Project Number: 1003-001-300 Reported: Tustin CA, 92780 Project Manager: Jeremy Squire 02/16/12 16:58

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2021415 - EPA 5030 GC										
Blank (2021415-BLK1)				Prepared:	02/14/12	Analyze	d: 02/15/12			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	94.8		"	100		94.8	72.6-146			
LCS (2021415-BS1)				Prepared:	: 02/14/12	Analyze	d: 02/15/12			
C6-C12 (GRO)	4930	50	ug/l	5500		89.7	75-125			
Surrogate 4-Bromofluorobenzene	104		"	100		104	72.6-146			
Matrix Spike (2021415-MS1)	Sou	rce: T12024	1-01	Prepared:	02/14/12	Analyze	d: 02/15/12			
C6-C12 (GRO)	11300	50	ug/l	5500	8250	54.6	65-135			QM-01
Surrogate 4-Bromofluorobenzene	99.0		"	100		99.0	72.6-146			
Matrix Spike Dup (2021415-MSD1)	Sou	rce: T12024	1-01	Prepared:	: 02/14/12	Analyze	d: 02/15/12			
C6-C12 (GRO)	12100	50	ug/l	5500	8250	69.6	65-135	7.04	20	
Surrogate 4-Bromofluorobenzene	109		"	100		109	72.6-146			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/16/12 16:58

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 2021414 -	EPA 5030	GCMS
-----------------	----------	------

Blank (2021414-BLK1)				Prepared & Analyzed: 02/14/12
Bromobenzene	ND	1.0	ug/l	
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
n-Butylbenzene	ND	1.0	"	
sec-Butylbenzene	ND	1.0	"	
tert-Butylbenzene	ND	1.0	"	
Carbon tetrachloride	ND	0.50	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
2-Chlorotoluene	ND	1.0	"	
4-Chlorotoluene	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	
Dibromomethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
Dichlorodifluoromethane	ND	0.50	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	0.50	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,3-Dichloropropane	ND	1.0	"	
2,2-Dichloropropane	ND	1.0	"	
1,1-Dichloropropene	ND	1.0	"	
cis-1,3-Dichloropropene	ND	0.50	"	
trans-1,3-Dichloropropene	ND	0.50	"	
Hexachlorobutadiene	ND	1.0	"	
Isopropylbenzene	ND	1.0	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/16/12 16:58

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2021414 - EPA 5030 GCMS									

Blank (2021414-BLK1)				Prepared & Ana	alyzed: 02/14	/12	
p-Isopropyltoluene	ND	1.0	ug/l	*			
Methylene chloride	ND	1.0	"				
Naphthalene	ND	1.0	"				
n-Propylbenzene	ND	1.0	"				
Styrene	ND	1.0	"				
1,1,2,2-Tetrachloroethane	ND	1.0	"				
1,1,1,2-Tetrachloroethane	ND	1.0	"				
Tetrachloroethene	ND	1.0	"				
1,2,3-Trichlorobenzene	ND	1.0	"				
1,2,4-Trichlorobenzene	ND	1.0	"				
1,1,2-Trichloroethane	ND	1.0	"				
1,1,1-Trichloroethane	ND	1.0	"				
Trichloroethene	ND	1.0	"				
Trichlorofluoromethane	ND	1.0	"				
1,2,3-Trichloropropane	ND	1.0	"				
1,3,5-Trimethylbenzene	ND	1.0	**				
1,2,4-Trimethylbenzene	ND	1.0	**				
Vinyl chloride	ND	1.0	"				
Benzene	ND	0.50	**				
Toluene	ND	0.50	"				
Ethylbenzene	ND	0.50	**				
m,p-Xylene	ND	1.0	"				
o-Xylene	ND	0.50	"				
Tert-amyl methyl ether	ND	2.0	"				
Tert-butyl alcohol	ND	10	"				
Di-isopropyl ether	ND	2.0	"				
Ethyl tert-butyl ether	ND	2.0	"				
Methyl tert-butyl ether	ND	1.0	"				
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"				
Surrogate 4-Bromofluorobenzene	8.80		"	8.00	110	83.5-119	
Surrogate Dibromofluoromethane	7.66		"	8.00	95.8	81-136	
Surrogate Toluene-d8	8.09		"	8.00	101	88.8-117	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/16/12 16:58

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2021414 - EPA 5030 GCMS										
LCS (2021414-BS1)				Prepared	& Analyz	ed: 02/14	/12			
Chlorobenzene	21.4	1.0	ug/l	20.0		107	75-125			
1,1-Dichloroethene	18.0	1.0	"	20.0		89.8	75-125			
Trichloroethene	20.5	1.0	"	20.0		102	75-125			
Benzene	19.8	0.50	"	20.0		99.0	75-125			
Toluene	21.0	0.50	"	20.0		105	75-125			
Surrogate 4-Bromofluorobenzene	8.16		"	8.00		102	83.5-119			
Surrogate Dibromofluoromethane	7.98		"	8.00		99.8	81-136			
Surrogate Toluene-d8	8.14		"	8.00		102	88.8-117			
Matrix Spike (2021414-MS1)	So	urce: T12024	11-01	Prepared	& Analyz	ed: 02/14	/12			
Chlorobenzene	22.2	1.0	ug/l	20.0	ND	111	75-125			
1,1-Dichloroethene	12.1	1.0	"	20.0	ND	60.3	75-125			QM-0:
Trichloroethene	19.6	1.0	"	20.0	ND	98.2	75-125			
Benzene	396	0.50	"	20.0	850	NR	75-125			QM-02
Toluene	74.6	0.50	"	20.0	57.3	86.4	75-125			
Surrogate 4-Bromofluorobenzene	8.13		"	8.00		102	83.5-119			
Surrogate Dibromofluoromethane	7.84		"	8.00		98.0	81-136			
Surrogate Toluene-d8	8.13		"	8.00		102	88.8-117			
Matrix Spike Dup (2021414-MSD1)	So	urce: T12024	11-01	Prepared	& Analyz	ed: 02/14	/12			
Chlorobenzene	21.7	1.0	ug/l	20.0	ND	109	75-125	2.10	20	
1,1-Dichloroethene	11.8	1.0	"	20.0	ND	59.2	75-125	1.76	20	QM-03
Trichloroethene	20.4	1.0	"	20.0	ND	102	75-125	3.60	20	
Benzene	384	0.50	"	20.0	850	NR	75-125	3.15	20	QM-02
Toluene	71.5	0.50	"	20.0	57.3	70.8	75-125	4.27	20	QM-05
Surrogate 4-Bromofluorobenzene	8.06		"	8.00		101	83.5-119			
Surrogate Dibromofluoromethane	7.56		"	8.00		94.5	81-136			
Surrogate Toluene-d8	8.18		"	8.00		102	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/16/12 16:58

Notes and Definitions

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to possible matrix interference. The LCS was within

acceptance criteria. The data is acceptable as no negative impact on data is expected.

QM-02 The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inhorant in the sample.

inherent in the sample.

QM-01 The % recovery is outside of established control limits due to matrix interference and/or sample dilution due to matrix effect. The batch

was accepted based on acceptable LCS recovery.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

17 February 2012

Jeremy Squire Murex 2640 Walnut Ave. Unit F Tustin, CA 92780

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 02/14/12 16:19. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Wendy Hsiao

Project Manager

Wordy Hsia

Reported:

02/17/12 17:14

Murex Project: Cenco

2640 Walnut Ave. Unit F Project Number: 1003-001-300
Tustin CA, 92780 Project Manager: Jeremy Squire

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_703_021412_01	T120249-01	Water	02/14/12 10:07	02/14/12 16:19
LL_704_021412_01	T120249-02	Water	02/14/12 12:45	02/14/12 16:19
LL_704_021412_02	T120249-03	Water	02/14/12 13:00	02/14/12 16:19
LL_705_021412_01	T120249-04	Water	02/14/12 14:20	02/14/12 16:19
LL_705_021412_02	T120249-05	Water	02/14/12 14:30	02/14/12 16:19
LL_706_021412_01	T120249-06	Water	02/14/12 15:44	02/14/12 16:19
LL_TB_021412	T120249-07	Water	02/14/12 15:44	02/14/12 16:19

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/17/12 17:14

LL_703_021412_01 T120249-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

C6-C12 (GRO)	470	50	ug/l	1	2021510	02/15/12	02/15/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		89.3 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by E	PA Method 8260	В						
Bromobenzene	ND	1.0	ug/l	1	2021513	02/15/12	02/15/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	3.0	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	28	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	1.0	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsia

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/17/12 17:14

LL_703_021412_01 T120249-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,2-Dichloropropane	ND	1.0	ug/l	1	2021513	02/15/12	02/15/12	EPA 8260B
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	1.6	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	1.1	1.0	"	"	"	"	"	"
-Propylbenzene	1.6	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Frichloroethene	2.6	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	2.5	1.0	"	"	"	"	"	"
Benzene	48	0.50	"	"	"	"	"	"
Toluene	0.72	0.50	"	"	"	"	"	"
Ethylbenzene	1.4	0.50	"	"	"	"	"	"
n,p-Xylene	1.9	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
Cert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Cert-butyl alcohol	ND	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Tustin CA, 92780Project Manager: Jeremy Squire

Reported: 02/17/12 17:14

LL_703_021412_01 T120249-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

Di-isopropyl ether	ND	2.0	ug/l	1	2021513	02/15/12	02/15/12	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.1 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		116 %	81-1	136	"	"	"	"	
Surrogate: Toluene-d8		107 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsia

Murex Project: Cenco

2640 Walnut Ave. Unit F Project Number: 1003-001-300 Reported: Tustin CA, 92780 Project Manager: Jeremy Squire 02/17/12 17:14

LL_704_021412_01 T120249-02 (Water)

Reporting Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Note

SunStar Laboratories, Inc.

Durgooblo	Dotroloum	Hydrocarbons	by FDA	2015C
Purgeable	Petroleum	Hydrocarbons	DVEPA	りいしつし

C6-C12 (GRO)	7700	50	ug/l	1	2021510	02/15/12	02/15/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		98.1 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by El	PA Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2021513	02/15/12	02/15/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	6.6	1.0	"	"	"	"	"	"
sec-Butylbenzene	9.9	1.0	"	"	"	"	"	"
tert-Butylbenzene	1.6	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	5.7	1.0	"	"	"	"	"	"
1,2-Dichloroethane	5.9	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	5.3	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/17/12 17:14

LL_704_021412_01 T120249-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		ounotai La	idoi atoi i	es, mc.				
Volatile Organic Compounds by 1	EPA Method 8260E	3						
1,3-Dichloropropane	ND	1.0	ug/l	1	2021513	02/15/12	02/15/12	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	60	1.0	"	"	"	"	"	"
p-Isopropyltoluene	11	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	50	1.0	"	"	"	"	"	"
n-Propylbenzene	66	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	**	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	**	"	"	"	"	"
1,3,5-Trimethylbenzene	210	5.0	"	5	"	"	"	"
1,2,4-Trimethylbenzene	500	5.0	"	"	"	"	"	"
Vinyl chloride	3.1	1.0	"	1	"	"	"	"
Benzene	310	2.5	"	5	"	"	"	"
Toluene	89	2.5	"	"	"	"	"	"
Ethylbenzene	390	2.5	"	"	"	"	"	"
m,p-Xylene	530	5.0	"	"	"	"	"	"
o-Xylene	95	0.50	"	1	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	73	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	**	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/17/12 17:14

LL_704_021412_01 T120249-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile	Organic	Compounds	hy EPA	Method 8260B	
voiauic	Organic	Compounds	DYELA	MICHIOU 0400D	

Ethyl tert-butyl ether	ND	2.0	ug/l	1	2021513	02/15/12	02/15/12	EPA 8260B	
Methyl tert-butyl ether	100	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		112 %	83.5-119		"	"	"	"	
Surrogate: Dibromofluoromethane		113 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		106 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit F Project Number: 1003-001-300 Reported: Tustin CA, 92780 Project Manager: Jeremy Squire 02/17/12 17:14

LL_704_021412_02 T120249-03 (Water)

Reporting Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Note

SunStar Laboratories, Inc.

Purgeable Petroleum Hydrocarbons by EPA 8015C

C6-C12 (GRO)	7800	50	ug/l	1	2021510	02/15/12	02/15/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		96.8 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by EI	PA Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2021513	02/15/12	02/15/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	6.0	1.0	"	"	"	"	"	"
sec-Butylbenzene	9.0	1.0	"	"	"	"	"	"
tert-Butylbenzene	1.6	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	11
4-Chlorotoluene	ND	1.0	"	"	"	"	"	11
Dibromochloromethane	ND	1.0	"	"	"	"	"	11
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	11
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	11
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	4.9	1.0	"	"	"	"	"	"
1,2-Dichloroethane	6.2	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	4.5	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/17/12 17:14

LL_704_021412_02 T120249-03 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,3-Dichloropropane	ND	1.0	ug/l	1	2021513	02/15/12	02/15/12	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	57	1.0	"	"	"	"	"	"
p-Isopropyltoluene	10	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	53	1.0	"	"	"	"	"	"
n-Propylbenzene	63	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	220	5.0	"	5	"	"	"	"
,2,4-Trimethylbenzene	510	5.0	"	"	"	"	"	"
/inyl chloride	2.3	1.0	"	1	"	"	"	"
Benzene	320	2.5	"	5	"	"	"	"
Toluene	89	2.5	"	"	"	"	"	"
Ethylbenzene	410	2.5	"	"	"	"	"	"
n,p-Xylene	560	5.0	"	"	"	"	"	"
o-Xylene	96	0.50	"	1	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	80	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/17/12 17:14

LL_704_021412_02 T120249-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile	Organic	Compounds	bv	EPA	Method 8260B	
1 Olatic	OI Zaine	Compounds	, ,,		MICHIOU OFOOD	

· • • • • • • • • • • • • • • • • • • •									
Ethyl tert-butyl ether	ND	2.0	ug/l	1	2021513	02/15/12	02/15/12	EPA 8260B	
Methyl tert-butyl ether	130	5.0	"	5	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	1	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.6 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		118 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		103 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit F Project Number: 1003-001-300 Reported: Tustin CA, 92780 Project Manager: Jeremy Squire 02/17/12 17:14

LL_705_021412_01 T120249-04 (Water)

Reporting Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Note

SunStar Laboratories, Inc.

Purgeable Petroleum Hydrocarbons by EPA 8015C

C6-C12 (GRO)	410	50	ug/l	1	2021510	02/15/12	02/15/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		96.8 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by EPA M	Iethod 8260B							
Bromobenzene	ND	1.0	ug/l	1	2021513	02/15/12	02/15/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	2.7	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	11
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	11
4-Chlorotoluene	ND	1.0	"	"	"	"	"	11
Dibromochloromethane	ND	1.0	"	"	"	"	"	11
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	11
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	11
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	11
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	1.3	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	8.9	1.0	"	"	"	"	"	11
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	11
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/17/12 17:14

LL_705_021412_01 T120249-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		Sunstai La	andi atoi i	es, mc.				
Volatile Organic Compounds by I	EPA Method 8260E	3						
1,3-Dichloropropane	ND	1.0	ug/l	1	2021513	02/15/12	02/15/12	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	10	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	3.3	1.0	"	"	"	"	"	"
n-Propylbenzene	8.0	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	3.8	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	8.1	1.0	"	"	"	"	"	"
Vinyl chloride	1.8	1.0	"	"	"	"	"	"
Benzene	52	0.50	"	"	"	"	"	"
Foluene	1.2	0.50	"	"	"	"	"	"
Ethylbenzene	7.0	0.50	"	"	"	"	"	"
m,p-Xylene	7.8	1.0	"	"	"	"	"	"
o-Xylene	0.66	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	240	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/17/12 17:14

LL_705_021412_01 T120249-04 (Water)

	Re	porting							
Analyte	esult	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds b	y EPA Method 8260B
------------------------------	--------------------

· • • • • • • • • • • • • • • • • • • •									
Ethyl tert-butyl ether	ND	2.0	ug/l	1	2021513	02/15/12	02/15/12	EPA 8260B	
Methyl tert-butyl ether	250	10	"	10	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	1	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		109 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		112 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		107 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

440

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/17/12 17:14

LL_705_021412_02 T120249-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

2021510

02/15/12

02/15/12

EPA 8015C

50

Purgeable	Petroleum	Hydrocarbons	by	EPA	8015C

C6-C12 (GRO)

Surrogate: 4-Bromofluorobenzene	95.1 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by EPA Method 8260B							
Bromobenzene ND	1.0	ug/l	1	2021513	02/15/12	02/15/12	EPA 8260B
Bromochloromethane ND	1.0	"	"	"	"	"	"
Bromodichloromethane ND	1.0	"	"	"	"	"	"
Bromoform ND	1.0	"	"	"	"	"	"
Bromomethane ND	1.0	"	"	"	"	"	"
n-Butylbenzene ND	1.0	"	"	"	"	"	"
sec-Butylbenzene 2.5	1.0	"	"	"	"	"	"
tert-Butylbenzene ND	1.0	"	"	"	"	"	"
Carbon tetrachloride ND	0.50	"	"	"	"	"	"
Chlorobenzene ND	1.0	"	"	"	"	"	"
Chloroethane ND	1.0	"	"	"	"	"	"
Chloroform ND	1.0	"	"	"	"	"	"
Chloromethane ND	1.0	"	"	"	"	"	"
2-Chlorotoluene ND	1.0	"	"	"	"	"	"
4-Chlorotoluene ND	1.0	"	"	"	"	"	"
Dibromochloromethane ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB) ND	1.0	"	"	"	"	"	"
Dibromomethane ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene 1.3	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene 8.3	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/17/12 17:14

LL_705_021412_02 T120249-05 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,3-Dichloropropane	ND	1.0	ug/l	1	2021513	02/15/12	02/15/12	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	9.1	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
n-Propylbenzene	7.2	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	2.6	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	5.0	1.0	"	"	"	"	"	"
Vinyl chloride	1.5	1.0	"	"	"	"	"	"
Benzene	49	0.50	"	"	"	"	"	"
Toluene	0.86	0.50	"	"	"	"	"	"
Ethylbenzene	5.6	0.50	"	"	"	"	"	"
m,p-Xylene	5.7	1.0	"	"	"	"	"	"
o-Xylene	ND	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	230	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/17/12 17:14

LL_705_021412_02 T120249-05 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Ethyl tert-butyl ether	ND	2.0	ug/l	1	2021513	02/15/12	02/15/12	EPA 8260B	
Methyl tert-butyl ether	250	10	"	10	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	1	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		106 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		115 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		108 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

350

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/17/12 17:14

LL_706_021412_01 T120249-06 (Water)

Reporting

Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Note.

SunStar Laboratories, Inc.

ug/l

2021510

02/15/12

02/15/12

EPA 8015C

50

Purgeable	Petroleum	Hydrocarbons	by	EPA	8015C

C6-C12 (GRO)

Surrogate: 4-Bromofluorobenzene	94.2 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by EPA Method 8260B	,						
Bromobenzene ND	1.0	ug/l	1	2021513	02/15/12	02/16/12	EPA 8260B
Bromochloromethane ND	1.0	"	"	"	"	"	"
Bromodichloromethane ND	1.0	"	"	"	"	"	"
Bromoform ND	1.0	"	"	"	"	"	"
Bromomethane ND	1.0	"	"	"	"	"	"
n-Butylbenzene ND	1.0	"	"	"	"	"	"
sec-Butylbenzene ND	1.0	"	"	"	"	"	"
tert-Butylbenzene ND	1.0	"	"	"	"	"	"
Carbon tetrachloride ND	0.50	"	"	"	"	"	"
Chlorobenzene ND	1.0	"	"	"	"	"	"
Chloroethane ND	1.0	"	"	"	"	"	"
Chloroform ND	1.0	"	"	"	"	"	"
Chloromethane ND	1.0	"	"	"	"	"	"
2-Chlorotoluene ND	1.0	"	"	"	"	"	"
4-Chlorotoluene ND	1.0	"	"	"	"	"	"
Dibromochloromethane ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB) ND	1.0	"	"	"	"	"	"
Dibromomethane ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene 4.5	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/17/12 17:14

LL_706_021412_01 T120249-06 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,3-Dichloropropane	ND	1.0	ug/l	1	2021513	02/15/12	02/16/12	EPA 8260E
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
fethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	2.5	1.0	"	"	"	"	"	"
enzene	16	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	16	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/17/12 17:14

LL_706_021412_01 T120249-06 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA	A Method 8260B							
Di-isopropyl ether	ND	2.0	ug/l	1	2021513	02/15/12	02/16/12	EPA 8260B
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	4.4	1.0	"	"	"	"	"	"
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"

 CFC 113)
 Surrogate: 4-Bromofluorobenzene
 100 %
 83.5-119
 "
 "
 "
 "
 "

 Surrogate: Dibromofluoromethane
 99.6 %
 81-136
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "</t

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/17/12 17:14

LL_TB_021412 T120249-07 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Bromobenzene	ND	1.0	ug/l	1	2021513	02/15/12	02/15/12	EPA 8260E
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/17/12 17:14

LL_TB_021412 T120249-07 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

is-1,3-Dichloropropene	ND	0.50	ug/l	1	2021513	02/15/12	02/15/12	EPA 8260E
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/17/12 17:14

LL_TB_021412 T120249-07 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	2021513	02/15/12	02/15/12	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		102 %	83.5-119)	"	"	"	"	
Surrogate: Dibromofluoromethane		118 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		104 %	88.8-117	,	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit F Project Number: 1003-001-300 Reported: Tustin CA, 92780 Project Manager: Jeremy Squire 02/17/12 17:14

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2021510 - EPA 5030 GC										
Blank (2021510-BLK1)				Prepared	& Analyzo	ed: 02/15/	12			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	80.6		"	100		80.6	72.6-146			
LCS (2021510-BS1)				Prepared	& Analyze	ed: 02/15/	12			
C6-C12 (GRO)	5200	50	ug/l	5500		94.5	75-125			
Surrogate 4-Bromofluorobenzene	84.5		"	100		84.5	72.6-146			
Matrix Spike (2021510-MS1)	Sou	rce: T12024	4-01	Prepared	& Analyzo	ed: 02/15/	12			
C6-C12 (GRO)	5300	50	ug/l	5500	196	92.7	65-135			
Surrogate 4-Bromofluorobenzene	96.3		"	100		96.3	72.6-146			
Matrix Spike Dup (2021510-MSD1)	Sou	rce: T12024	4-01	Prepared	& Analyze	ed: 02/15/	12			
C6-C12 (GRO)	5310	50	ug/l	5500	196	92.9	65-135	0.222	20	
Surrogate 4-Bromofluorobenzene	99.0		"	100		99.0	72.6-146			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/17/12 17:14

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch	2021513	- EP	'A 50	J30 G	CMS

Blank (2021513-BLK1)				Prepared & Analyzed: 02/15/12
Bromobenzene	ND	1.0	ug/l	
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
n-Butylbenzene	ND	1.0	"	
sec-Butylbenzene	ND	1.0	"	
tert-Butylbenzene	ND	1.0	"	
Carbon tetrachloride	ND	0.50	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
2-Chlorotoluene	ND	1.0	"	
4-Chlorotoluene	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	
Dibromomethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
Dichlorodifluoromethane	ND	0.50	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	0.50	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,3-Dichloropropane	ND	1.0	"	
2,2-Dichloropropane	ND	1.0	"	
1,1-Dichloropropene	ND	1.0	"	
cis-1,3-Dichloropropene	ND	0.50	"	
trans-1,3-Dichloropropene	ND	0.50	"	
Hexachlorobutadiene	ND	1.0	"	
Isopropylbenzene	ND	1.0	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/17/12 17:14

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (2021513-BLK1)				Prepared & Ar	nalyzed: 02/15	/12
o-Isopropyltoluene	ND	1.0	ug/l			
Methylene chloride	ND	1.0	"			
Naphthalene	ND	1.0	"			
n-Propylbenzene	ND	1.0	"			
Styrene	ND	1.0	"			
,1,2,2-Tetrachloroethane	ND	1.0	"			
1,1,1,2-Tetrachloroethane	ND	1.0	"			
Tetrachloroethene	ND	1.0	"			
1,2,3-Trichlorobenzene	ND	1.0	"			
1,2,4-Trichlorobenzene	ND	1.0	"			
1,1,2-Trichloroethane	ND	1.0	"			
1,1,1-Trichloroethane	ND	1.0	"			
Trichloroethene	ND	1.0	"			
Trichlorofluoromethane	ND	1.0	"			
1,2,3-Trichloropropane	ND	1.0	"			
1,3,5-Trimethylbenzene	ND	1.0	"			
,2,4-Trimethylbenzene	ND	1.0	"			
Vinyl chloride	ND	1.0	"			
Benzene	ND	0.50	"			
Coluene	ND	0.50	"			
Ethylbenzene	ND	0.50	"			
n,p-Xylene	ND	1.0	"			
p-Xylene	ND	0.50	"			
Tert-amyl methyl ether	ND	2.0	"			
Tert-butyl alcohol	ND	10	"			
Di-isopropyl ether	ND	2.0	"			
Ethyl tert-butyl ether	ND	2.0	"			
Methyl tert-butyl ether	ND	1.0	"			
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"			
Surrogate 4-Bromofluorobenzene	8.25		"	8.00	103	83.5-119
Surrogate Dibromofluoromethane	9.11		"	8.00	114	81-136
Surrogate Toluene-d8	8.27		"	8.00	103	88.8-117

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/17/12 17:14

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2021513 - EPA 5030 GCMS										
LCS (2021513-BS1)				Prepared	& Analyze	ed: 02/15/	12			
Chlorobenzene	20.4	1.0	ug/l	20.0		102	75-125			
1,1-Dichloroethene	21.6	1.0	"	20.0		108	75-125			
Trichloroethene	22.6	1.0	"	20.0		113	75-125			
Benzene	22.9	0.50	"	20.0		114	75-125			
Toluene	21.6	0.50	"	20.0		108	75-125			
Surrogate 4-Bromofluorobenzene	8.33		"	8.00		104	83.5-119			
Surrogate Dibromofluoromethane	7.14		"	8.00		89.2	81-136			
Surrogate Toluene-d8	8.55		"	8.00		107	88.8-117			
Matrix Spike (2021513-MS1)	Sou	rce: T12024	9-01	Prepared	& Analyze	12				
Chlorobenzene	18.3	1.0	ug/l	20.0	ND	91.6	75-125			
1,1-Dichloroethene	21.7	1.0	"	20.0	2.98	93.5	75-125			
Trichloroethene	22.8	1.0	"	20.0	2.61	101	75-125			
Benzene	64.3	0.50	"	20.0	48.1	81.0	75-125			
Toluene	21.8	0.50	"	20.0	0.720	105	75-125			
Surrogate 4-Bromofluorobenzene	7.95		"	8.00		99.4	83.5-119			
Surrogate Dibromofluoromethane	7.14		"	8.00		89.2	81-136			
Surrogate Toluene-d8	8.68		"	8.00		108	88.8-117			
Matrix Spike Dup (2021513-MSD1)	Sou	rce: T12024	9-01	Prepared	& Analyze	12				
Chlorobenzene	19.6	1.0	ug/l	20.0	ND	98.0	75-125	6.86	20	
1,1-Dichloroethene	21.3	1.0	"	20.0	2.98	91.6	75-125	1.82	20	
Trichloroethene	26.6	1.0	"	20.0	2.61	120	75-125	15.5	20	
Benzene	66.6	0.50	"	20.0	48.1	92.8	75-125	3.58	20	
Toluene	22.8	0.50	"	20.0	0.720	110	75-125	4.39	20	
Surrogate 4-Bromofluorobenzene	7.97		"	8.00		99.6	83.5-119			
Surrogate Dibromofluoromethane	6.96		"	8.00		87.0	81-136			
Surrogate Toluene-d8	8.93		"	8.00		112	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

2640 Walnut Ave. Unit FProject Number: 1003-001-300Reported:Tustin CA, 92780Project Manager: Jeremy Squire02/17/12 17:14

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Chain of Custody Record

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Client: Murex Environmental, Inc. Address: 2640 Walnut Ave, Unit F Phone: (714) 508-0800 Project Manager: Jeremy Squire (714)	Fax: <u>(714) 508-</u> 604-5836	-0880				Pr C	oject Na ollector: atch #:_	me: Fra	ne S	osic	I L		Pag Clier EDF	nt Project	#: 1003-00	1-300	
Sample ID LL_703_02/4/2_01 LL_704_02/4/2_01 LL_704_02/4/2_02 LL_705_02/4/2_01 LL_706_02/4/2_01 LL_TB_02/4/2		Time 1007 1245 1300 1430 1430	Sample Type GW	(8015	XXXXXXVOCs (8260 B)								N N N N N Total # of containers	Cor	mments/Prese	vative	00 05 06 07 07 07 07 07 07 07 07 07 07 07 07 07
Relinquished by: (signature)		1619	Received by: (signat Da			2(4	Chain of Custody seals			38 Notes							
Relinquished by: (signature) Relinquished by: (signature)	Date / Time		Received by: (signat Da Received by: (signat Da				Received good			4 Y	1.2			·			

SAMPLE RECEIVING REVIEW SHEET

BATCH # 7/20249			
Client Name: Murex Env.	Project:Can	co	
Received by:	Date/Time Received:	2.14.1	2/1649
Delivered by: Client SunStar Courier GSO	FedEx Other		
Total number of coolers receivedO Temp cr	iteria = 6°C > 0°C (no	frozen co	ontainers)
Temperature: cooler #1 $\underline{/.9}$ °C +/- the CF (- 0.2°C) = $\underline{/}$.2 °C corrected tempera	ture	
cooler #2°C +/- the CF (- 0.2°C) =	°C corrected tempera	ure	
cooler #3°C +/- the CF (- 0.2 °C) =	°C corrected tempera	ure	
Samples outside temp. but received on ice, w/in 6 hours of fina	l sampling. XYes	□No*	□N/A
Custody Seals Intact on Cooler/Sample	∐Yes	□N•*	∑ N/A
Sample Containers Intact	∑Yes	□No*	
Sample labels match COC ID's	ĭ¥Yes	□No*	
Total number of containers received match COC	⊠Yes	□No*	
Proper containers received for analyses requested on COC	∑Yes	□No*	
Proper preservative indicated on COC/containers for analyses r	requested Yes	□No*	□N/A
Complete shipment received in good condition with correct ten preservatives and within method specified holding times.	· ·	labels, vol	umes
* Complete Non-Conformance Receiving Sheet if checked Conformance	oler/Sample Review - Ini	ials and dat	e St 2-15-12
Comments:			
· · · · · · · · · · · · · · · · · · ·			